Home
Class 14
MATHS
If A=2^3xx3^2,B=2^2xx3^5 and C=2^3xx3^2,...

If `A=2^3xx3^2,B=2^2xx3^5 and C=2^3xx3^2`, then what is the value of `AxxBxxC`?

A

A)`2^8""3^9`

B

B)`2^9""3^(10)`

C

C)`2^7""3^(10)`

D

D)`2^(10)""3^(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( A \times B \times C \) given: - \( A = 2^3 \times 3^2 \) - \( B = 2^2 \times 3^5 \) - \( C = 2^3 \times 3^2 \) ### Step-by-step Solution: 1. **Write down the expressions for A, B, and C:** \[ A = 2^3 \times 3^2 \] \[ B = 2^2 \times 3^5 \] \[ C = 2^3 \times 3^2 \] 2. **Multiply A, B, and C together:** \[ A \times B \times C = (2^3 \times 3^2) \times (2^2 \times 3^5) \times (2^3 \times 3^2) \] 3. **Combine the powers of 2:** - The powers of 2 in the product are \( 3 + 2 + 3 \). \[ 3 + 2 + 3 = 8 \] Thus, the power of 2 in the product is \( 2^8 \). 4. **Combine the powers of 3:** - The powers of 3 in the product are \( 2 + 5 + 2 \). \[ 2 + 5 + 2 = 9 \] Thus, the power of 3 in the product is \( 3^9 \). 5. **Write the final result:** \[ A \times B \times C = 2^8 \times 3^9 \] ### Conclusion: The value of \( A \times B \times C \) is \( 2^8 \times 3^9 \).
Promotional Banner