Home
Class 14
MATHS
If N=(sqrt""9+sqrt""7)div(sqrt""9-sqrt""...

If `N=(sqrt""9+sqrt""7)div(sqrt""9-sqrt""7)`, then what is the simplified value of 1/N?

A

`8-sqrt""63`

B

`8+sqrt""63`

C

`4+sqrt""17`

D

`4-sqrt""17`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the simplified value of \( \frac{1}{N} \) where \( N = \frac{\sqrt{9} + \sqrt{7}}{\sqrt{9} - \sqrt{7}} \). ### Step-by-Step Solution: 1. **Identify the expression for \( N \)**: \[ N = \frac{\sqrt{9} + \sqrt{7}}{\sqrt{9} - \sqrt{7}} \] 2. **Find \( \frac{1}{N} \)**: Taking the reciprocal of \( N \): \[ \frac{1}{N} = \frac{\sqrt{9} - \sqrt{7}}{\sqrt{9} + \sqrt{7}} \] 3. **Rationalize the denominator**: To simplify \( \frac{1}{N} \), we multiply the numerator and denominator by \( \sqrt{9} - \sqrt{7} \): \[ \frac{1}{N} = \frac{(\sqrt{9} - \sqrt{7})(\sqrt{9} - \sqrt{7})}{(\sqrt{9} + \sqrt{7})(\sqrt{9} - \sqrt{7})} \] 4. **Simplify the numerator**: The numerator becomes: \[ (\sqrt{9} - \sqrt{7})^2 = \sqrt{9}^2 - 2\sqrt{9}\sqrt{7} + \sqrt{7}^2 = 9 - 2\sqrt{63} + 7 = 16 - 2\sqrt{63} \] 5. **Simplify the denominator**: The denominator can be simplified using the difference of squares: \[ (\sqrt{9})^2 - (\sqrt{7})^2 = 9 - 7 = 2 \] 6. **Combine the results**: Thus, we have: \[ \frac{1}{N} = \frac{16 - 2\sqrt{63}}{2} \] 7. **Final simplification**: Dividing both terms in the numerator by 2: \[ \frac{1}{N} = 8 - \sqrt{63} \] ### Conclusion: The simplified value of \( \frac{1}{N} \) is: \[ \frac{1}{N} = 8 - \sqrt{63} \]
Promotional Banner