Home
Class 14
MATHS
If a/b=4/3, then what is the value of (3...

If a/b=4/3, then what is the value of `(3a+2b)div(a-b)`?

A

6

B

12

C

18

D

24

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given ratio and manipulate it to find the desired expression. Let's break it down step by step. ### Step-by-Step Solution: 1. **Given Information**: We know that \( \frac{a}{b} = \frac{4}{3} \). 2. **Express \( a \) in terms of \( b \)**: From the ratio, we can express \( a \) as: \[ a = \frac{4}{3}b \] 3. **Substitute \( a \) into the expression**: We need to find the value of \( \frac{3a + 2b}{a - b} \). Substituting \( a \) from step 2 into the expression gives: \[ \frac{3\left(\frac{4}{3}b\right) + 2b}{\frac{4}{3}b - b} \] 4. **Simplify the numerator**: The numerator becomes: \[ 3\left(\frac{4}{3}b\right) + 2b = 4b + 2b = 6b \] 5. **Simplify the denominator**: The denominator becomes: \[ \frac{4}{3}b - b = \frac{4}{3}b - \frac{3}{3}b = \frac{1}{3}b \] 6. **Combine the results**: Now we can substitute the simplified numerator and denominator back into the expression: \[ \frac{6b}{\frac{1}{3}b} \] 7. **Simplify the fraction**: Dividing \( 6b \) by \( \frac{1}{3}b \) gives: \[ 6b \div \frac{1}{3}b = 6b \times \frac{3}{1} = 18 \] ### Final Answer: Thus, the value of \( \frac{3a + 2b}{a - b} \) is \( 18 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If (a + b):(b + c): (c+a)= 15:14:11, and a + b + c = 40, then what is the value of (3a+b-4c)?

If 2A = 3B , then what is the value of (A + B)/A?

If a/b=2/3 then find the values of (4a+3b)/(3b)

If a=3 and b=1, what is the value of 2a-3(2-b)?

If a/b=3/4 then find the value of 7a-4b:3a+b .

If a-b=2 and ab=8 , then what is the value of a^3 - b^3 ?