Home
Class 14
MATHS
What is the value of sqrt(23+2sqrt(130))...

What is the value of `sqrt(23+2sqrt(130))` ?

A

A) `sqrt(15) + sqrt(8)`

B

B) `sqrt(21) + sqrt(2)`

C

C) `sqrt(13) + sqrt(10)`

D

D) `sqrt(13) + sqrt(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sqrt{23 + 2\sqrt{130}} \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ \sqrt{23 + 2\sqrt{130}} \] ### Step 2: Identify components We can express \( 23 \) and \( 2\sqrt{130} \) in a way that resembles the expansion of a square. Notice that: \[ 23 = 13 + 10 \] and \[ 2\sqrt{130} = 2\sqrt{13 \times 10} \] ### Step 3: Recognize the square form We can rewrite the expression as: \[ \sqrt{( \sqrt{13} + \sqrt{10} )^2} \] This is because: \[ (\sqrt{13} + \sqrt{10})^2 = \sqrt{13}^2 + \sqrt{10}^2 + 2 \cdot \sqrt{13} \cdot \sqrt{10} \] which simplifies to: \[ 13 + 10 + 2\sqrt{130} = 23 + 2\sqrt{130} \] ### Step 4: Simplify the square root Now we can simplify: \[ \sqrt{( \sqrt{13} + \sqrt{10} )^2} = \sqrt{13} + \sqrt{10} \] ### Conclusion Thus, the value of \( \sqrt{23 + 2\sqrt{130}} \) is: \[ \sqrt{13} + \sqrt{10} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of sqrt(8 - 2 sqrt(15)) ?

What is the value of sqrt(613 + sqrt(144)) ?

What is the value of sqrt(7 + 4sqrt(3))?

What is the value of sqrt(7 + 4sqrt(3))?