Home
Class 14
MATHS
If x : y : z = 3 : 4 : 9, then what will...

If x : y : z = 3 : 4 : 9, then what will be the value of (2x + 3y + z) : (2z + x – 3y)?

A

`3 : 1`

B

`2 : 1`

C

`5 : 3`

D

`7 : 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of the ratio \( (2x + 3y + z) : (2z + x - 3y) \) given that \( x : y : z = 3 : 4 : 9 \). ### Step-by-step Solution: 1. **Express x, y, and z in terms of a common variable:** Since \( x : y : z = 3 : 4 : 9 \), we can express: - \( x = 3k \) - \( y = 4k \) - \( z = 9k \) where \( k \) is a positive constant. 2. **Substitute x, y, and z into the expressions:** We need to evaluate: - \( 2x + 3y + z \) - \( 2z + x - 3y \) Substituting the values: - \( 2x = 2(3k) = 6k \) - \( 3y = 3(4k) = 12k \) - \( z = 9k \) So, \[ 2x + 3y + z = 6k + 12k + 9k = 27k \] Now for the second expression: - \( 2z = 2(9k) = 18k \) - \( x = 3k \) - \( 3y = 3(4k) = 12k \) Thus, \[ 2z + x - 3y = 18k + 3k - 12k = 9k \] 3. **Form the ratio:** Now we can form the ratio: \[ \frac{2x + 3y + z}{2z + x - 3y} = \frac{27k}{9k} \] Simplifying this gives: \[ \frac{27k}{9k} = \frac{27}{9} = 3 \] 4. **Express the ratio in standard form:** The ratio can be expressed as: \[ 3 : 1 \] ### Final Answer: Thus, the value of \( (2x + 3y + z) : (2z + x - 3y) \) is \( 3 : 1 \).
Promotional Banner

Similar Questions

Explore conceptually related problems

2x = 3y = 4z, x: y: z

If 4 x^(2) + 9y^(2) + z^(2) + 49 = 12 ( x+ y + z) , then what is the value of (4x + 9y - z) ?

If x^2 + y^2 + z^2 =2 (x-y-z) - 3, then the value of 2x - 3y + 4z is [Assume that x, y, z are all real numbers] :

If 3x-4y+z=7; 2x-z+3y=19 ; x+2y+2z=24 , then what is the value of z ? (a) 4 (b) 5 (c) 6 (d) 8

If x = 2a- 1, y = (2a - 2) and z =3 - 4a, then the value of x ^(3) + y ^(3) + z ^(3) will be :