Home
Class 14
MATHS
If N = sqrt7 - sqrt3, then what is the v...

If N = `sqrt7 - sqrt3`, then what is the value of (1/N)?

A

`(sqrt7 + sqrt3)`

B

`(sqrt7 + sqrt3)//4`

C

`4(sqrt7 + sqrt3)`

D

`(sqrt7 + sqrt3)//2`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \frac{1}{N} \) where \( N = \sqrt{7} - \sqrt{3} \), we can follow these steps: ### Step 1: Write the expression for \( \frac{1}{N} \) We start with the expression: \[ \frac{1}{N} = \frac{1}{\sqrt{7} - \sqrt{3}} \] ### Step 2: Rationalize the denominator To rationalize the denominator, we multiply the numerator and the denominator by the conjugate of the denominator, which is \( \sqrt{7} + \sqrt{3} \): \[ \frac{1}{\sqrt{7} - \sqrt{3}} \cdot \frac{\sqrt{7} + \sqrt{3}}{\sqrt{7} + \sqrt{3}} = \frac{\sqrt{7} + \sqrt{3}}{(\sqrt{7} - \sqrt{3})(\sqrt{7} + \sqrt{3})} \] ### Step 3: Simplify the denominator Using the difference of squares formula \( (a - b)(a + b) = a^2 - b^2 \), we simplify the denominator: \[ (\sqrt{7})^2 - (\sqrt{3})^2 = 7 - 3 = 4 \] ### Step 4: Write the final expression Now we can write the expression as: \[ \frac{\sqrt{7} + \sqrt{3}}{4} \] ### Step 5: Final answer Thus, the value of \( \frac{1}{N} \) is: \[ \frac{\sqrt{7} + \sqrt{3}}{4} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If N=sqrt8-sqrt5 , then what is the value of (1/N)?

If N = ( sqrt7 - sqrt3) //(sqrt7 + sqrt3), then what is the value of N + (1/N)?

If a = sqrt(7 + 4sqrt(3)) , then what is the value of a + 1/a ?