Home
Class 14
REASONING
If PQRST: SPTRQ then HIJKL: ? A. KHJLI...

If PQRST: SPTRQ then HIJKL: ?
A. KHJLI
B. KHLIJ
C. KHLJI
D. KHILJ

A

A

B

D

C

C

D

B

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If a/b = c/d , then ( ( a +c )/( b + d ) ) is equal to

If in two triangles A B C and D E F , (A B)/(D E)=(B C)/(F E)=(C A)/(F D) , then F D E C A B (b) F D E A B C (c) C B A F D E (d) B C A F D E

In a A B C , A D is the bisector of /_A , meeting side B C at D . If A B=10 c m , A C=14 c m and B C=6c m , find B D and D C (ii) If A C=4. 2 c m , D C=6c m and B C=10 c m , find A B . (iii) If A B=5. 6 c m , A C=6c m and D C=3c m , find B C .

In an equilateral triangle A B C if A D_|_B C , then A D^2 = (a)C D^2 (b) 2C D^2 (c) 3C D^2 (d) 4C D^2

D ,\ E ,\ F are the mid-point of the sides B C ,\ C A\ a n d\ A B respectively of A B Cdot Then D E F is congruent to triangle. A B C (b) AEF (c) B F D ,\ C D E (d) A F E ,\ B F D ,\ C D E

If a, b, c, d are in proportion, then a : b = c : d and written as a : b : : c : d . Which of the following is true?

Write increasing order of basic strength of following: (i). (a) F^(ɵ) , (b). Cl^(ɵ) , (c). Br^(ɵ) , (d). I^(ɵ) (A). a gt b gt c gt d (B). d lt a lt c lt b (C). d gt a gt b gt c (D). a gt d gt c gt b (ii). (a). CH_(3)^(ɵ) , (b). Cl^(ɵ) , (c) OH^(ɵ) , (d). F^(ɵ) (A). a gt b gt c gt d (B). d lt a lt c lt b (C). d gt a gt b gt c (D). a gt d gt c gt b (iii). (a). R-NH_(2) , (b). Ph-NH_(2) , (c). R-underset(O)underset(||)(C)-NH_(2) (A). a gt b gt c (B). a lt c lt b (C). a lt b lt c (D). a gt c gt b (iv). (a). NH_(3) , (b). MeNH_(2) , (c). Me_(2)NH , (d). Me_(2)N (A). a lt b lt c lt d (B). d lt a lt c lt b (C). d gt a gt b gt c (D). a gt d gt c gt b

In Fig. 10.78, if A D , A E and B C are tangents to the circle at D , E and F respectively. Then, (FIGURE) A D=A B+B C+C A (b) 2A D=A B+B C+C A (c) 3A D=A B+B C+C A (d) 4A D=A B+B C+C A

A B C\ a n d\ D B C are two isosceles triangles on the same bas B C and vertices A\ a n d\ D are on the same side of B C . If A D is extended to intersect B C at P , show that A B D\ ~= A C D (ii) A B P\ ~= A C P