Home
Class 14
MATHS
if sqrtx + (1)/(sqrt(x)) = 4, find the v...

if `sqrtx + (1)/(sqrt(x)) = 4`, find the value of `x^(2) + (1)/(x^(2))`.

A

196

B

258

C

254

D

194

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{x} + \frac{1}{\sqrt{x}} = 4 \) and find the value of \( x^2 + \frac{1}{x^2} \), we can follow these steps: ### Step 1: Let \( y = \sqrt{x} \) We start by substituting \( y = \sqrt{x} \). This gives us: \[ y + \frac{1}{y} = 4 \] ### Step 2: Square both sides Next, we square both sides of the equation: \[ \left(y + \frac{1}{y}\right)^2 = 4^2 \] This simplifies to: \[ y^2 + 2 \cdot y \cdot \frac{1}{y} + \frac{1}{y^2} = 16 \] \[ y^2 + 2 + \frac{1}{y^2} = 16 \] ### Step 3: Rearrange the equation Now, we can rearrange the equation to isolate \( y^2 + \frac{1}{y^2} \): \[ y^2 + \frac{1}{y^2} = 16 - 2 \] \[ y^2 + \frac{1}{y^2} = 14 \] ### Step 4: Relate back to \( x \) Since \( y = \sqrt{x} \), we have: \[ \sqrt{x}^2 + \frac{1}{\sqrt{x}^2} = x + \frac{1}{x} \] Thus, \[ x + \frac{1}{x} = 14 \] ### Step 5: Square again to find \( x^2 + \frac{1}{x^2} \) Now, we square \( x + \frac{1}{x} \): \[ \left(x + \frac{1}{x}\right)^2 = 14^2 \] This gives: \[ x^2 + 2 + \frac{1}{x^2} = 196 \] \[ x^2 + \frac{1}{x^2} = 196 - 2 \] \[ x^2 + \frac{1}{x^2} = 194 \] ### Final Answer Thus, the value of \( x^2 + \frac{1}{x^2} \) is: \[ \boxed{194} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SSC SELECTION POST 14 DEC 2020 SHIFT 3 GRADUATION POST

    SSC SELECTION POST|Exercise QUANTITATIVE APTITUDE|25 Videos
  • SSC SELECTION POST 9 NOV 2020 SHIFT 3 GRADUATION LEVEL

    SSC SELECTION POST|Exercise QUANTITATIVE APTITUDE |25 Videos

Similar Questions

Explore conceptually related problems

If x=(1)/(2-sqrt(3)) then find the value of x+(1)/(x)

If x+(1)/(x)=sqrt(5), find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))

Knowledge Check

  • If x + (1)/(x) = 4sqrt(3) , then find the value of x^(2) + (1)/(x^(2)) ?

    A
    A)46
    B
    B)44
    C
    C)56
    D
    D)52
  • If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .

    A
    38
    B
    98
    C
    62
    D
    47
  • If sqrtx+(1)/(sqrtx)=3 , then the value of x^3+(1)/(x^3) is:

    A
    322
    B
    326
    C
    324
    D
    422
  • Similar Questions

    Explore conceptually related problems

    x=(4)/(2sqrt(3)+3sqrt(2)) then find the value of (x + (1)/(x))

    If x=sqrt(2)+1 find the value of x^(4)-4x^(3)+4x^(2)+1

    If 2x = sqrt(a) - (1)/(sqrt(a)) , then the value of (sqrt(x^(2) + 1))/(x + sqrt(x^(2) +1)) is

    If x=sqrt(2)+1 , then the value of x^(4)-(1)/(x^(4)) is

    If x=1+sqrt(2)+sqrt(3) , then find the value of x^(2)-2x+4 .