Home
Class 14
MATHS
If 2cos^(2)theta-5costheta+2=0,0^(@)ltth...

If `2cos^(2)theta-5costheta+2=0,0^(@)ltthetalt90^(@)` then the value of `(1)/((cosectheta+cottheta))` is :

A

`(sqrt(3))/(3)`

B

`sqrt3`

C

`2sqrt3`

D

`(1)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2\cos^2\theta - 5\cos\theta + 2 = 0 \) and find the value of \( \frac{1}{\csc\theta + \cot\theta} \), we will follow these steps: ### Step 1: Solve the quadratic equation The given equation is: \[ 2\cos^2\theta - 5\cos\theta + 2 = 0 \] Let \( x = \cos\theta \). The equation becomes: \[ 2x^2 - 5x + 2 = 0 \] ### Step 2: Factor the quadratic equation To factor the quadratic, we look for two numbers that multiply to \( 2 \times 2 = 4 \) and add to \( -5 \). The numbers are \( -4 \) and \( -1 \). Thus, we can rewrite the equation as: \[ 2x^2 - 4x - x + 2 = 0 \] Grouping the terms: \[ 2x(x - 2) - 1(x - 2) = 0 \] Factoring out \( (x - 2) \): \[ (2x - 1)(x - 2) = 0 \] ### Step 3: Find the roots Setting each factor to zero gives: 1. \( 2x - 1 = 0 \) → \( x = \frac{1}{2} \) 2. \( x - 2 = 0 \) → \( x = 2 \) Since \( \cos\theta \) must be in the range \([-1, 1]\), we discard \( x = 2 \). Thus, we have: \[ \cos\theta = \frac{1}{2} \] ### Step 4: Determine the angle The angle \( \theta \) that satisfies \( \cos\theta = \frac{1}{2} \) in the range \( 0^\circ < \theta < 90^\circ \) is: \[ \theta = 60^\circ \] ### Step 5: Calculate \( \csc\theta \) and \( \cot\theta \) Now we need to find \( \csc\theta \) and \( \cot\theta \): \[ \csc\theta = \frac{1}{\sin\theta} = \frac{1}{\sin 60^\circ} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}} \] \[ \cot\theta = \frac{\cos\theta}{\sin\theta} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}} \] ### Step 6: Find \( \csc\theta + \cot\theta \) Now we can calculate: \[ \csc\theta + \cot\theta = \frac{2}{\sqrt{3}} + \frac{1}{\sqrt{3}} = \frac{2 + 1}{\sqrt{3}} = \frac{3}{\sqrt{3}} = \sqrt{3} \] ### Step 7: Calculate \( \frac{1}{\csc\theta + \cot\theta} \) Finally, we find: \[ \frac{1}{\csc\theta + \cot\theta} = \frac{1}{\sqrt{3}} \] ### Final Answer Thus, the value of \( \frac{1}{\csc\theta + \cot\theta} \) is: \[ \frac{1}{\sqrt{3}} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SSC SELECTION POST (14 DEC 2020) SHIFT 1 MATRICULATION LEVEL

    SSC SELECTION POST|Exercise Quantitative Aptitude|25 Videos
  • SSC SELECTION POST (9 NOV 2020 SHIFT 1 HSC)

    SSC SELECTION POST|Exercise MULTIPLE CHOICE QUESTIONS|25 Videos

Similar Questions

Explore conceptually related problems

If tantheta-cottheta=0(0^(@)ltthetalt90^(@)) , then the value of sintheta-costheta is

If 0^(@)ltthetalt90^(@) , the value of sintheta+costheta is

Knowledge Check

  • If 4-2sin^(2)theta-5costheta=0,0^(@)ltthetalt90^(@) , then the value of (sintheta+tantheta) is :

    A
    `(3sqrt(2))/(2)`
    B
    `(3sqrt(3))/(2)`
    C
    `3sqrt(2)`
    D
    `2sqrt(3)`
  • If sintheta-costheta=0,0^(@)ltthetalt90^(@) , then the value of sin^(4)theta+cos^(4)theta is :

    A
    `""_(1)^(3)`
    B
    1
    C
    `""_(1)^(2)`
    D
    `""_(1)^(4)`
  • If 3 sec^(2)theta + tan theta = 7, 0^(@) lt theta lt 90^(@) , then the value of (cosec2theta+costheta)/(sin2theta+cottheta) is:

    A
    `(2+sqrt(3))/4`
    B
    `(2+3sqrt(2))/4`
    C
    `(3+sqrt(2))/4`
    D
    `(2+sqrt(3))/2`
  • Similar Questions

    Explore conceptually related problems

    If 3costheta-sintheta=(1)/(sqrt(2)),(0^(@)ltthetalt90^(@)) , then the value of 3sintheta+2costheta .

    If 5costheta+12sintheta=13,0^(@)ltthetalt90^(@) , then the value of sin theta is

    If 5 sin theta - 4 cos theta = 0, 0^(@) lt theta lt 90^(@) , then the value of (5sintheta-2costheta)/(sintheta+3costheta) is :

    If sintheta-costheta=(7)/(13)and0ltthetalt90^(@) , then the value of sintheta+costheta is

    If costheta=(-1)/(2)and0^(@)ltthetalt360^(@) , then the values of theta are