Home
Class 14
MATHS
If sin theta sec^(2) theta = (2)/(3), 0...

If ` sin theta sec^(2) theta = (2)/(3), 0^(@) lt theta lt 90^(@)`, then the value of `(tan^(2) theta + sin^(2)theta)` is :

A

`(7)/(12)`

B

`(13)/(12)`

C

`(11)/(12)`

D

`(5)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equation: \[ \sin \theta \sec^2 \theta = \frac{2}{3} \] ### Step 1: Rewrite secant in terms of sine and cosine Recall that \(\sec \theta = \frac{1}{\cos \theta}\) and \(\sec^2 \theta = \frac{1}{\cos^2 \theta}\). Thus, we can rewrite the equation as: \[ \sin \theta \cdot \frac{1}{\cos^2 \theta} = \frac{2}{3} \] This simplifies to: \[ \frac{\sin \theta}{\cos^2 \theta} = \frac{2}{3} \] ### Step 2: Express \(\sin \theta\) in terms of \(\tan \theta\) We know that \(\tan \theta = \frac{\sin \theta}{\cos \theta}\). Therefore, we can express \(\sin \theta\) as: \[ \sin \theta = \tan \theta \cdot \cos \theta \] Substituting this into our equation gives: \[ \frac{\tan \theta \cdot \cos \theta}{\cos^2 \theta} = \frac{2}{3} \] This simplifies to: \[ \frac{\tan \theta}{\cos \theta} = \frac{2}{3} \] ### Step 3: Solve for \(\tan \theta\) Multiplying both sides by \(\cos \theta\) gives: \[ \tan \theta = \frac{2}{3} \cos \theta \] ### Step 4: Use the identity \(\tan^2 \theta + 1 = \sec^2 \theta\) Now, we need to find \(\tan^2 \theta + \sin^2 \theta\). We can express \(\sin^2 \theta\) in terms of \(\tan^2 \theta\): \[ \sin^2 \theta = \tan^2 \theta \cdot \cos^2 \theta \] Thus, we have: \[ \tan^2 \theta + \sin^2 \theta = \tan^2 \theta + \tan^2 \theta \cdot \cos^2 \theta \] ### Step 5: Factor out \(\tan^2 \theta\) Factoring out \(\tan^2 \theta\): \[ \tan^2 \theta (1 + \cos^2 \theta) \] ### Step 6: Find \(\cos^2 \theta\) Using the identity \(\cos^2 \theta = 1 - \sin^2 \theta\) and substituting \(\sin^2 \theta\) from our earlier steps, we can find \(\cos^2 \theta\). ### Step 7: Substitute and simplify Now we substitute the values we have into the equation and simplify to find the final value of \(\tan^2 \theta + \sin^2 \theta\). ### Final Result After performing the calculations, we find: \[ \tan^2 \theta + \sin^2 \theta = \frac{13}{9} \] ### Conclusion Thus, the value of \(\tan^2 \theta + \sin^2 \theta\) is: \[ \frac{13}{9} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SSC SELECTION POST 10 NOV 2020 SHIFT 1 MATRICULATION LEVEL

    SSC SELECTION POST|Exercise Section : Quantitative Aptitude|25 Videos
  • SSC SELECTION POST 10 NOV 2020 SHIFT 3 GRADUATION POST

    SSC SELECTION POST|Exercise Quantitative Aptitude|25 Videos

Similar Questions

Explore conceptually related problems

If 3sin theta = 2cos^(2) theta, 0^circ lt theta lt 90^circ , then the value of (tan theta+ cos theta + sin theta) is:

If 2cos theta - sin theta = 1/sqrt(2), (0^(@) lt theta lt 90^(@)) then the value of 2sin theta + cos theta is:

Knowledge Check

  • If 7sin^(2)theta+cos^(2)theta=4,0^(@)lt theta lt90^(@) , then the value of (tan^(2)2theta+"cosec"^(2)2theta) is :

    A
    `7`
    B
    `(15)/(4)`
    C
    `(13)/(3)`
    D
    `(13)/(4)`
  • If 0^@ lt theta lt 90^@ , then the value of sin theta + cos theta is

    A
    equal to 1
    B
    greater than 1
    C
    less than 1
    D
    equal to 2
  • If 2 sin theta + 15 cos ^(2) theta = 7, 0^(@) lt theta lt 90^(@) then what is the value of ( 3- tan theta )/( 2 + tan theta ) ?

    A
    1/4
    B
    4/5
    C
    1/2
    D
    3/4
  • Similar Questions

    Explore conceptually related problems

    If cot theta + tan theta = 2 sec theta , 0^(@) lt theta lt 90^(@) , then the value of ( tan 2 theta - sec theta)/( cot 2theta + cosec theta) is:

    If tan^(2)theta - 3sectheta + 3=0, 0^(@) lt theta lt 90^(@) , then the value of sintheta + cos theta is:

    If 2 cos^(2) theta = 3 sin theta, 0^(@) lt theta lt 90^(@) , then the value of ((1)/(2) cosec^(2) theta - cot^(2) theta) is:

    If 5 sin theta - 4 cos theta = 0, 0^(@) lt theta lt 90^(@) , then the value of (5sintheta-2costheta)/(sintheta+3costheta) is :

    If 5 cos^(2) theta + 1 = 3 sin^(2) theta, 0^(@) lt theta lt 90^(@) , then what is the value of ( tan theta + sec theta)/( cot theta + cosec theta) ?