Home
Class 14
MATHS
If x +1/x = sqrt5, then x^(3) + 1/x^(3) ...

If x +`1/x` = `sqrt5`, then `x^(3) + 1/x^(3)` is equal to :

A

`5sqrt(5)`

B

`2sqrt(5)`

C

`4sqrt(5)`

D

`3sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^3 + \frac{1}{x^3} \) given that \( x + \frac{1}{x} = \sqrt{5} \). ### Step-by-Step Solution: 1. **Start with the given equation**: \[ x + \frac{1}{x} = \sqrt{5} \] 2. **Cube both sides**: \[ \left( x + \frac{1}{x} \right)^3 = \left( \sqrt{5} \right)^3 \] This simplifies to: \[ x^3 + 3x\left(\frac{1}{x}\right)\left(x + \frac{1}{x}\right) + \frac{1}{x^3} = 5\sqrt{5} \] 3. **Simplify the left-hand side**: The term \( 3x\left(\frac{1}{x}\right) \) simplifies to \( 3 \): \[ x^3 + \frac{1}{x^3} + 3\left(x + \frac{1}{x}\right) = 5\sqrt{5} \] Substitute \( x + \frac{1}{x} = \sqrt{5} \): \[ x^3 + \frac{1}{x^3} + 3\sqrt{5} = 5\sqrt{5} \] 4. **Isolate \( x^3 + \frac{1}{x^3} \)**: \[ x^3 + \frac{1}{x^3} = 5\sqrt{5} - 3\sqrt{5} \] Simplifying gives: \[ x^3 + \frac{1}{x^3} = 2\sqrt{5} \] ### Final Answer: \[ x^3 + \frac{1}{x^3} = 2\sqrt{5} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+1/(x)=5 , then x^(3)+1/(x^(3)) is equal to

If (x - 1/x) = 5 , then x^3 - 1/(x^3) equals :

If x = sqrt(7 - 4 sqrt(3)) , then x + (1)/(x) is equal to :