Home
Class 14
MATHS
When 2sin^(2)theta=3costheta, and 0lethe...

When `2sin^(2)theta=3costheta`, and `0lethetale90^(@)`, then`theta`=?

A

`45^(@)`

B

`30^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \(2\sin^2\theta = 3\cos\theta\) for \(\theta\) in the range \(0 \leq \theta \leq 90^\circ\), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ 2\sin^2\theta = 3\cos\theta \] Using the identity \(\sin^2\theta = 1 - \cos^2\theta\), we can substitute for \(\sin^2\theta\): \[ 2(1 - \cos^2\theta) = 3\cos\theta \] ### Step 2: Expand and rearrange Expanding the left side gives us: \[ 2 - 2\cos^2\theta = 3\cos\theta \] Rearranging this equation leads to: \[ 2\cos^2\theta + 3\cos\theta - 2 = 0 \] ### Step 3: Identify coefficients for the quadratic equation This is a quadratic equation in the form \(Ax^2 + Bx + C = 0\), where: - \(A = 2\) - \(B = 3\) - \(C = -2\) ### Step 4: Use the quadratic formula The quadratic formula is given by: \[ x = \frac{-B \pm \sqrt{B^2 - 4AC}}{2A} \] Substituting in our values: \[ \cos\theta = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-2)}}{2 \cdot 2} \] ### Step 5: Calculate the discriminant Calculating the discriminant: \[ B^2 - 4AC = 9 + 16 = 25 \] Thus, we have: \[ \cos\theta = \frac{-3 \pm \sqrt{25}}{4} \] ### Step 6: Solve for \(\cos\theta\) Calculating the square root gives us: \[ \cos\theta = \frac{-3 \pm 5}{4} \] This results in two potential solutions: 1. \(\cos\theta = \frac{2}{4} = \frac{1}{2}\) 2. \(\cos\theta = \frac{-8}{4} = -2\) (not valid since cosine cannot be less than -1) ### Step 7: Find \(\theta\) Since \(\cos\theta = \frac{1}{2}\), we find: \[ \theta = 60^\circ \] ### Conclusion Thus, the value of \(\theta\) is: \[ \theta = 60^\circ \]
Promotional Banner

Similar Questions

Explore conceptually related problems

When 2 sin^2 theta =3 cos theta , and 0letheta le90 , then theta = जब 2 sin^2 theta =3 cos theta , तथा 0letheta le90 है, तो theta = ?

If 2sin^(2)theta=3costheta , where 0lethetale2pi , then find the value of theta .

If 4-2sin^(2)theta-5costheta=0,0^(@)ltthetalt90^(@) , then the value of (sintheta+tantheta) is :

If theta +costheta=1 and 0^(@)lethetale90^(@), " then the possible value of " theta are ___________.

If 3(cot^(2)theta-cos^(2)theta)=1-sin^(2)theta,0^(@)ltthetalt90^(@), then the theta equal to

If 5 sin theta - 4 cos theta = 0, 0^(@) lt theta lt 90^(@) , then the value of (5sintheta-2costheta)/(sintheta+3costheta) is :

If asin^(3)theta + bcos^(3)theta = sin theta costheta, 0 lt theta lt 90^(@) and asintheta = b costheta then the value of a^(2) + b^(2) is:

If tantheta=sinthetaand0^(@)lethetale90^(@) ,then find the value of theta .