Home
Class 14
MATHS
DeltaABC~DeltaEDF and AB = 5 cm, BC = 8 ...

`DeltaABC~DeltaEDF` and AB = 5 cm, BC = 8 cm and AC = 10 cm. If ar `(DeltaABC)` : ar`(DeltaDEF)` = 9 : 4 , then DF is equal to:

A

`16/3cm`

B

`32/9cm`

C

`10/3cm`

D

`20/3cm`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of similar triangles and the relationship between the areas of the triangles and their corresponding sides. ### Step-by-Step Solution: 1. **Understand the Similarity of Triangles**: Since \( \Delta ABC \sim \Delta EDF \), the ratios of the areas of the triangles are equal to the square of the ratios of their corresponding sides. 2. **Write the Area Ratio**: We are given that the ratio of the areas of triangles \( ABC \) and \( DEF \) is: \[ \frac{ar(\Delta ABC)}{ar(\Delta DEF)} = \frac{9}{4} \] 3. **Set Up the Ratio of Sides**: Let \( DF \) be the side corresponding to \( BC \) in triangle \( ABC \). The ratio of the sides can be expressed as: \[ \left( \frac{BC}{DF} \right)^2 = \frac{9}{4} \] 4. **Substitute the Length of Side BC**: We know \( BC = 8 \, \text{cm} \). Substitute this value into the equation: \[ \left( \frac{8}{DF} \right)^2 = \frac{9}{4} \] 5. **Take the Square Root**: Taking the square root of both sides gives: \[ \frac{8}{DF} = \frac{3}{2} \] 6. **Cross-Multiply to Solve for DF**: Cross-multiplying yields: \[ 8 \cdot 2 = 3 \cdot DF \] \[ 16 = 3 \cdot DF \] 7. **Isolate DF**: To find \( DF \), divide both sides by 3: \[ DF = \frac{16}{3} \, \text{cm} \] ### Final Answer: Thus, the length of \( DF \) is \( \frac{16}{3} \, \text{cm} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

triangle ABC ~ triangle EDF and AB =5 cm, BC = 8cm and AC = 10cm.If ar(triangle ABC) : ar(triangle EDF) = 9: 4 ,then DF is equal to: triangle ABC ~ triangle EDF है तथा AB = 5cm, BC = 8cm और AC = 10cm है| यदि ar(triangle ABC) : ar(triangle EDF) = 9: 4 ,है, तो DF का मान क्या होगा ?

DeltaABC-DeltaRQP and PQ = 10 cm, QR = 12 cm and RP = 16 cm. If ar (DeltaPQR) : ar (DeltaABC)=9/4 then BC is equal to:

triangle ABC ~ triangle RQP and AB = 4 cm , BC = 6 cm and AC = 5 cm. If ar(triangle ABC) : ar (triangle PQR)=9:4 , then PQ is equals to : triangle ABC ~ triangle RQP है तथा AB = 4 सेमी, BC = 6 सेमी और AC = 5 सेमी है | यदि ar(triangle ABC) : ar (triangle PQR)=9:4 ,है, तो PQ किसके बराबर है ?

In DeltaABC, AB = 8 cm, BC=15 cm and AC = 17 cm. find the largest angle.

DeltaABC is such that AB = 3 cm, BC = 2 cm, CA = 2.5 cm. If DeltaABC ~ DeltaDEF and EF= 4 cm, then perimeter of DeltaDEF is :

DeltaABC ~ DeltaDEF . If BC = 5 cm,EF = 7.5 cm and A(Delta DEF) = 45cm^2 , then A(DeltaABC) =

DeltaABC is such that AB=3 cm, BC= 2cm, CA= 2.5 cm. If DeltaABC ~ DeltaDEF and EF = 4cm, then perimeter of DeltaDEF is

DeltaABC~DeltaPQR . If AB=4cm , PQ=6cm and QR=9cm . Find BC .

If DeltaABC ~ DeltaDEF such that A(DeltaABC) = 4A(DeltaDEF) and AC = 6 cm, then DF =