Home
Class 14
MATHS
Chords AB and CD of a circle intersect a...

Chords AB and CD of a circle intersect at a point P inside the circle. If AB = 10 cm, AP = 4 cm and PC = 5 cm, then CD is equal to:

A

4.8 cm

B

6.8 cm

C

9.8 cm

D

7.8 cm

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will use the properties of intersecting chords in a circle. The key property we'll use is that the product of the segments of one chord is equal to the product of the segments of the other chord. ### Step-by-Step Solution: 1. **Identify the Given Values:** - Length of chord AB = 10 cm - Length of segment AP = 4 cm - Length of segment PC = 5 cm 2. **Calculate the Length of Segment PB:** - Since AB = AP + PB, we can express PB as: \[ PB = AB - AP = 10 \, \text{cm} - 4 \, \text{cm} = 6 \, \text{cm} \] 3. **Set Up the Relationship for Chords:** - According to the intersecting chords theorem: \[ AP \times PB = PC \times PD \] - We know: - \( AP = 4 \, \text{cm} \) - \( PB = 6 \, \text{cm} \) - \( PC = 5 \, \text{cm} \) - Let \( PD \) be the unknown length we need to find. 4. **Substitute the Known Values into the Equation:** - Substitute the known values into the equation: \[ 4 \times 6 = 5 \times PD \] - This simplifies to: \[ 24 = 5 \times PD \] 5. **Solve for PD:** - Rearranging gives: \[ PD = \frac{24}{5} = 4.8 \, \text{cm} \] 6. **Calculate the Length of CD:** - Now, we can find the length of chord CD: \[ CD = PC + PD = 5 \, \text{cm} + 4.8 \, \text{cm} = 9.8 \, \text{cm} \] 7. **Final Answer:** - Therefore, the length of chord CD is: \[ \boxed{9.8 \, \text{cm}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Two chords AB and CD of a circle intersect at a point P inside the circle. If AB = 7cm , PC = 2 cm and AP = 4 cm, then CD is equal to: एक वृत्त की दो जीवाएं AB और CD वृत्त के भीतर बिंदु P पर एक दूसरे को काटती हैं | यदि AB = 7 सेमी, PC = 2 सेमी और AP = 4 सेमी है, तो CD किसके बराबर होगा ?

Chords AB and CD of a circle , when produced, meet at point P outside the circle. If AB = 6 cm, CD = 3 cm and PD = 5 cm, then PB is equal to : एक वृत्त की जीवाएं AB और CD को जब बढ़ाया जाता है तो वे वृत्त के बाहर बिंदु P पर मिलती हैं | यदि AB = 6 सेमी, CD = 3 सेमी और PD = 5 सेमी है, तो PB का मान क्या होगा ?

Two chords AB and CD of a circle intersect each other at P internally. If AP = 3.5 cm, PC = 5 cm, and DP = 7 cm, then what is the measure of PB?

Chords AB and CD of a circle interset inside the circle at point E. If AE = 5.6 , EB = 10 cm , CE = 8 ,find ED.

In the given figure, O is the centre of the circle. Its two chords AB and CD intersect each other at the point P within the circle. If AB = 18 cm, PB = 8 cm, CP = 5 cm, then find the length of CD.

In a circle, AB is the diameter and CD is a chord. AB and CD produced meet at a point P, outside the circle. If PD = 15.3 cm, CD = 11.9 cm and AP = 30.6 cm, then the radius of the circle is: एक वृत्त में, AB व्यास है तथा CD एक जीवा है | AB तथा CD को बढ़ाया जाता है जो वृत्त से बाहर एक बिंदु P पर मिलती हैं | यदि PD = 15.3 सेमी, CD = 11.9 सेमी तथा AP = 30.6 सेमी है, तो वृत्त की त्रिज्या कितनी है ?