Home
Class 14
MATHS
If (a + b) = 6 and ab = 8 , then (a^3+b^...

If (a + b) = 6 and ab = 8 , then `(a^3+b^3)` is equal to

A

216

B

144

C

108

D

72

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \(a^3 + b^3\) given that \(a + b = 6\) and \(ab = 8\). ### Step-by-step Solution: 1. **Use the identity for the sum of cubes**: The formula for the sum of cubes is: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] We already know \(a + b = 6\) and \(ab = 8\). 2. **Find \(a^2 + b^2\)**: We can find \(a^2 + b^2\) using the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Substituting the known values: \[ a^2 + b^2 = (6)^2 - 2 \times 8 = 36 - 16 = 20 \] 3. **Substitute \(a^2 + b^2\) into the sum of cubes formula**: Now we can substitute \(a^2 + b^2\) into the sum of cubes formula: \[ a^3 + b^3 = (a + b)((a^2 + b^2) - ab) \] Substituting the values we have: \[ a^3 + b^3 = 6 \left(20 - 8\right) = 6 \times 12 = 72 \] ### Final Answer: Thus, \(a^3 + b^3 = 72\).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a - b = 5 and ab = 6, then (a^3-b^3) is equal to: यदि a - b = 5 और ab = 6 है, तो (a^3-b^3) का मान क्या होगा ?

If (a+ b) = 6 cm and ab =16/3 , then a^3+b^3 is equal to: यदि (a+ b) = 6 सेमी है और ab =16/3 है, तो a^3+b^3 का मान किसके बराबर होगा?

If a+b =5 and ab = 3 , then (a^(3)+b^(3)) is equal to :

If (a+ b) = 8 cm and ab =32/3 , then a^3+b^3 is equal to: यदि (a+ b) = 8सेमी है और ab =32/3 है, तो a^3+b^3 का मान किसके बराबर है ?

If (a-b)=4 and ab = 2, then (a^(3)-b^(3)) is equal to :