Home
Class 14
MATHS
The value of [(sin^2 24^@+ sin^2 66^@)/(...

The value of `[(sin^2 24^@+ sin^2 66^@)/(cos^2 24^@+cos^2 66^@)+ sin^2 61^@+cos 61^@ sin 29^@]` is:

A

`0`

B

`1`

C

`2`

D

`3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression: \[ \frac{\sin^2 24^\circ + \sin^2 66^\circ}{\cos^2 24^\circ + \cos^2 66^\circ} + \sin^2 61^\circ + \cos 61^\circ \sin 29^\circ \] we will break it down step by step. ### Step 1: Simplify \(\sin^2 66^\circ\) and \(\cos^2 66^\circ\) Using the identity \(\sin(90^\circ - \theta) = \cos(\theta)\) and \(\cos(90^\circ - \theta) = \sin(\theta)\): \[ \sin^2 66^\circ = \sin^2(90^\circ - 24^\circ) = \cos^2 24^\circ \] \[ \cos^2 66^\circ = \cos^2(90^\circ - 24^\circ) = \sin^2 24^\circ \] ### Step 2: Substitute back into the expression Now, substituting these identities into the expression: \[ \frac{\sin^2 24^\circ + \cos^2 24^\circ}{\cos^2 24^\circ + \sin^2 24^\circ} \] ### Step 3: Simplify the fraction Since \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \frac{1}{1} = 1 \] ### Step 4: Simplify \(\sin^2 61^\circ + \cos 61^\circ \sin 29^\circ\) Next, we need to simplify \(\sin^2 61^\circ + \cos 61^\circ \sin 29^\circ\). Using the identity \(\sin(90^\circ - \theta) = \cos(\theta)\): \[ \sin 29^\circ = \sin(90^\circ - 61^\circ) = \cos 61^\circ \] Thus, we can rewrite \(\cos 61^\circ \sin 29^\circ\) as: \[ \cos 61^\circ \cos 61^\circ = \cos^2 61^\circ \] So now we have: \[ \sin^2 61^\circ + \cos^2 61^\circ \] ### Step 5: Apply the Pythagorean identity Again, using the identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ \sin^2 61^\circ + \cos^2 61^\circ = 1 \] ### Step 6: Combine the results Now, we combine the results from Step 3 and Step 5: \[ 1 + 1 = 2 \] ### Final Answer Thus, the value of the given expression is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of [(sin^2 24^@+sin^2 66^@)/ (cos^2 24^@+cos^2 66^@)+sin^2 61^@ + cos61^@.sin29^@] is: / [(sin^2 24^@+sin^2 66^@)/ (cos^2 24^@+cos^2 66^@)+sin^2 61^@ + cos61^@.sin29^@] का मान ज्ञात करें |

The value of [ ( sin^(2) 25^(@) + sin^(2) 65^(@))/(cos^(2) 24^(@) + cos^2 66^(@)) + sin^(2)61^(@) + cos 61^@ sin 29^(@)] is :

What is the simplified value of ((sin^2 31^@+ sin^2 59^@)/(sec^2 35^@- cot^2 55^@)+tan 29^@ cot 61^@-cosec^2 61^@) is : ((sin^2 31^@+ sin^2 59^@)/(sec^2 35^@- cot^2 55^@)+tan 29^@ cot 61^@-cosec^2 61^@) का सरलीकृत मान क्या हैः

The value of (tan29^@ cot61^@ - cosec^2 61^@) + cot^2 54^@ - sec^2 36^@ + (sin^2 1^@ + sin^2 3^@ + sin^2 5^@ + ... + sin^2 89^@) is:

The simplified value of/सरलीकृत मान ज्ञात करें: [(sin^2 25+sin^2 65)/(cos^2 24+ cos^2 66) +sin^2 71+cos71. Sin19 ]

The value of sin^2 A cos^2 B + cos^2 A cos^2 B+sin^2 A sin^2 B + cos^2A sin^2B is ……..

Find the value of (cos^(2)66^(@)-sin^(2)6^(@))(cos^(2)48^(@)-sin^(2)12^(@)) .

The value of (sin 1^(@) +sin 3^(@) + sin 5^(@) +sin 7^(@))/(cos 1^(@)*cos 2^(@)sin 4^(@)) is __________

The value of (sin24^(@)cos6^(@)-sin6^(@)sin66^(@))/(sin21^(@)cos39^(@)-cos51^(@)sin69^(@)) is

What is the values of the following? ( sin 24^(@) +cos 66^(@)) (sin 24^(@) -cos66^(@))