Home
Class 14
MATHS
IF (x-5)^3+ (x-6)^3 +(x-7)^3=3 (x-5) (x-...

IF `(x-5)^3+ (x-6)^3 +(x-7)^3=3 (x-5) (x-6) (x-7)` then what is the value of x

A

7

B

6

C

5

D

18

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((x-5)^3 + (x-6)^3 + (x-7)^3 = 3(x-5)(x-6)(x-7)\), we can use the identity for the sum of cubes. The identity states that: \[ a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) \] In our case, we can let: - \(a = x - 5\) - \(b = x - 6\) - \(c = x - 7\) Now, substituting these into the equation, we have: \[ (x-5)^3 + (x-6)^3 + (x-7)^3 - 3(x-5)(x-6)(x-7) = 0 \] This can be rewritten using the identity: \[ (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) = 0 \] ### Step 1: Calculate \(a + b + c\) First, we calculate \(a + b + c\): \[ a + b + c = (x - 5) + (x - 6) + (x - 7) = 3x - 18 \] ### Step 2: Set \(a + b + c = 0\) Setting \(3x - 18 = 0\): \[ 3x = 18 \] \[ x = 6 \] ### Step 3: Verify the solution Now we need to verify if \(x = 6\) satisfies the original equation. Substituting \(x = 6\): \[ (6-5)^3 + (6-6)^3 + (6-7)^3 = 1^3 + 0^3 + (-1)^3 = 1 + 0 - 1 = 0 \] And for the right-hand side: \[ 3(6-5)(6-6)(6-7) = 3(1)(0)(-1) = 0 \] Both sides equal zero, confirming that \(x = 6\) is indeed a solution. ### Conclusion Thus, the value of \(x\) is: \[ \boxed{6} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If (2x-1)^3+(3x-4)^3+(x-7)^3= (6x-3) (3x-4)(x-7) , then what is the value of x?/ यदि (2x-1)^3+(3x-4)^3+(x-7)^3= (6x-3) (3x-4)(x-7) है, तो x का मान ज्ञात करें |

If (x-7)^3+(x-8)^3+(x+6)^3= 3 (x - 7) (x -8) (x+6) , then what is the value of x? यदि (x-7)^3+(x-8)^3+(x+6)^3= 3 (x - 7) (x -8) (x+6) है, तो x का मान क्या होगा ?

If (3x-7)^3+(3x-8)^3+(3x+6)^3= 3 (3x-7) (3x -8) (3x +6) , then what is the value of x? यदि (3x-7)^3+(3x-8)^3+(3x+6)^3= 3 (3x-7) (3x -8) (3x +6) हैतो x का मान क्या है?

If (x-7)^3+(x-8)^3+(x+6)^3= 3( x - 7 )(x - 8)(x +6) , then what is the value of x? यदि (x-7)^3+(x-8)^3+(x+6)^3= 3( x - 7 )(x - 8)(x +6) , हैतो x का मान क्या है?

If (3x-7)^3+(3x-8)^3+ (3x+6)^3= 3(3x - 7)(3x - 8)(3x +6) then what is the value of x ? यदि (3x-7)^3+(3x-8)^3+ (3x+6)^3= 3(3x - 7)(3x - 8)(3x +6) है, तो x का मान क्या होगा ?