Home
Class 14
MATHS
((1-tantheta)/(1-cottheta))^(2)+1=...

`((1-tantheta)/(1-cottheta))^(2)+1=`

A

`cos^(2) theta`

B

`sin^(2) theta`

C

`cosec^(2) theta`

D

`sec^(2) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\left(\frac{1 - \tan \theta}{1 - \cot \theta}\right)^2 + 1\), we will follow these steps: ### Step 1: Rewrite \(\tan \theta\) and \(\cot \theta\) in terms of \(\sin\) and \(\cos\) Recall that: - \(\tan \theta = \frac{\sin \theta}{\cos \theta}\) - \(\cot \theta = \frac{\cos \theta}{\sin \theta}\) Substituting these into the expression gives us: \[ \left(\frac{1 - \frac{\sin \theta}{\cos \theta}}{1 - \frac{\cos \theta}{\sin \theta}}\right)^2 + 1 \] ### Step 2: Simplify the fractions Now, we need to simplify the numerator and the denominator: **Numerator:** \[ 1 - \frac{\sin \theta}{\cos \theta} = \frac{\cos \theta - \sin \theta}{\cos \theta} \] **Denominator:** \[ 1 - \frac{\cos \theta}{\sin \theta} = \frac{\sin \theta - \cos \theta}{\sin \theta} \] ### Step 3: Substitute back into the expression Now substituting these back into our expression: \[ \left(\frac{\frac{\cos \theta - \sin \theta}{\cos \theta}}{\frac{\sin \theta - \cos \theta}{\sin \theta}}\right)^2 + 1 \] ### Step 4: Simplify the complex fraction This can be simplified as follows: \[ \left(\frac{\cos \theta - \sin \theta}{\sin \theta - \cos \theta} \cdot \frac{\sin \theta}{\cos \theta}\right)^2 + 1 \] Notice that \(\sin \theta - \cos \theta = -(\cos \theta - \sin \theta)\), so we can rewrite the fraction: \[ \left(-\frac{\sin \theta}{\cos \theta}\right)^2 + 1 \] ### Step 5: Simplify further This simplifies to: \[ \left(\frac{\sin \theta}{\cos \theta}\right)^2 + 1 = \tan^2 \theta + 1 \] ### Step 6: Use the Pythagorean identity Using the identity \(1 + \tan^2 \theta = \sec^2 \theta\): \[ \tan^2 \theta + 1 = \sec^2 \theta \] ### Final Answer Thus, the final answer is: \[ \sec^2 \theta \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (1+tantheta)^(2)+(1+cottheta)^(2)=(sectheta+"cosec "theta)^(2) .

(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta) is equal to -

(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+tantheta+cottheta=sectheta"cosec"theta+1

(sin^(2)theta)/(1-cottheta)+(cos^(2)theta)/(1-tantheta)=1+u,"then" : u

The value of (2cos^(2)theta-1)((1+tantheta)/(1-tantheta)+(1-tantheta)/(1+tantheta)) is

If ((1,-tantheta), (tantheta,1))((1,tantheta), (-tantheta,1))^(-1)=[(a,-b), (b,a)], then (i) a=cos2theta (ii) b=1 (iii) b=sin2theta (iv) b=-1

Prove that : (tantheta)/(1-cottheta)+(cottheta)/(1-tantheta)=1+sectheta" cosec "theta

If theta epsilon (0, pi/2) then the value of |((sintheta+cosectheta)^2, (sintheta- cosectheta)^2,1 ),((costheta+sectheta)^2, (costheta-sectheta)^2, 1),((tantheta+cottheta)^2, (tantheta-cottheta)^2, 1)|= (A) sintheta+costhetas+tantheta (B) 1 (C) 0 (D) 4

Let thetain(0,pi//4)and t_(1)=(tantheta)^(tantheta), t_(2)=(tantheta)^(cottheta),t_(3)=(cot theta)^(tantheta)and t_(4)=(cot theta)^(cot theta). Then,

What is the simplified value of ((1)/(cosectheta+cottheta))^(2) ?