Home
Class 14
MATHS
If theta lies in the first quadrant and ...

If `theta` lies in the first quadrant and `cos^(2)theta - sin^(2) theta = (1)/(2)`, then the value of `tan^(2) 2 theta + sin^(2) 3 theta` is :

A

`(7)/(2)`

B

3

C

`(4)/(3)`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the equation given in the question: 1. **Given Equation**: \[ \cos^2 \theta - \sin^2 \theta = \frac{1}{2} \] 2. **Using Trigonometric Identity**: We know that: \[ \cos^2 \theta - \sin^2 \theta = \cos 2\theta \] Therefore, we can rewrite the equation as: \[ \cos 2\theta = \frac{1}{2} \] 3. **Finding the Angle**: The value of \( \cos 2\theta = \frac{1}{2} \) corresponds to: \[ 2\theta = 60^\circ \quad \text{(since } \theta \text{ is in the first quadrant)} \] Thus, we can solve for \( \theta \): \[ \theta = 30^\circ \] 4. **Calculating \( \tan^2 2\theta \)**: Now we need to find \( \tan^2 2\theta \): \[ 2\theta = 60^\circ \implies \tan 2\theta = \tan 60^\circ = \sqrt{3} \] Therefore: \[ \tan^2 2\theta = (\sqrt{3})^2 = 3 \] 5. **Calculating \( \sin^2 3\theta \)**: Next, we find \( \sin^2 3\theta \): \[ 3\theta = 90^\circ \implies \sin 3\theta = \sin 90^\circ = 1 \] Thus: \[ \sin^2 3\theta = 1^2 = 1 \] 6. **Final Calculation**: Now we can combine both results: \[ \tan^2 2\theta + \sin^2 3\theta = 3 + 1 = 4 \] 7. **Conclusion**: The final answer is: \[ \boxed{4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If theta lies in the first quadrant and cos^2 theta-sin^2 theta=1/2 , then the value of tan^2 theta+sin^2 3 theta is : यदि theta पहले चतुर्थाश में स्थित है और cos^2 theta-sin^2 theta=1/2 है, तो tan^2 theta+sin^2 3 theta का मान ज्ञात करें |

If sin theta = cos theta ,then the value of 2 tan^(2) theta + sin^(2) theta -1 is equal to

If cos theta = (3)/(5) , then the value of (sin theta - tan theta + 1)/( 2 tan^(2) theta) is

If 2 sin theta + cos theta = 7/3 then the value of (tan^2 theta - sec^2 theta ) is

If theta lies in the first quadrant and 5tan theta=4 then (5sin theta-3cos theta)/(sin theta+2cos theta)=

If (theta) lies in III quadrant and sin theta=(-4)/(5) , then the value of tan^(2)((theta)/(2)) is equal to

If (sin theta + cos theta)/(sin theta - cos theta) = (5)/(4) , the value of (tan^(2) theta + 1)/(tan^(2) theta - 1) is

Prove that : (1 - tan^(2) theta)/(1 + tan^(2) theta) = cos^(2) theta - sin^(2) theta