Home
Class 14
MATHS
If x+ y + z = 11, x^(2) + y^(2) + z^(2) ...

If x+ y + z = 11, `x^(2) + y^(2) + z^(2) = 133 and x^(3) + y^(3) + z^(3)` = 881, then the value of `root(8)(xyz)` is :

A

-8

B

-6

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the given equations involving \(x\), \(y\), and \(z\): 1. **Given Equations**: - \(x + y + z = 11\) (1) - \(x^2 + y^2 + z^2 = 133\) (2) - \(x^3 + y^3 + z^3 = 881\) (3) 2. **Finding \(xy + yz + zx\)**: We can use the identity: \[ (x + y + z)^2 = x^2 + y^2 + z^2 + 2(xy + yz + zx) \] Substituting the values from equations (1) and (2): \[ 11^2 = 133 + 2(xy + yz + zx) \] \[ 121 = 133 + 2(xy + yz + zx) \] Rearranging gives: \[ 2(xy + yz + zx) = 121 - 133 = -12 \] Thus: \[ xy + yz + zx = \frac{-12}{2} = -6 \quad (4) \] 3. **Finding \(xyz\)**: We can use the identity for the sum of cubes: \[ x^3 + y^3 + z^3 - 3xyz = (x + y + z)((x + y + z)^2 - 3(xy + yz + zx)) \] Substituting the known values: \[ 881 - 3xyz = 11 \left(11^2 - 3(-6)\right) \] First, calculate \(11^2 - 3(-6)\): \[ 11^2 = 121 \] \[ 3(-6) = -18 \quad \Rightarrow \quad 121 + 18 = 139 \] Now substituting back: \[ 881 - 3xyz = 11 \times 139 \] Calculate \(11 \times 139\): \[ 11 \times 139 = 1529 \] Therefore: \[ 881 - 3xyz = 1529 \] Rearranging gives: \[ -3xyz = 1529 - 881 = 648 \] Thus: \[ xyz = \frac{-648}{3} = -216 \quad (5) \] 4. **Finding \(\sqrt[8]{xyz}\)**: We need to find \(\sqrt[8]{xyz}\): \[ \sqrt[8]{xyz} = \sqrt[8]{-216} \] Since \(-216\) can be expressed as: \[ -216 = -1 \times 216 \] We can separate this: \[ \sqrt[8]{-216} = \sqrt[8]{-1} \times \sqrt[8]{216} \] The eighth root of \(-1\) is not a real number, but we can focus on the magnitude: \[ \sqrt[8]{216} = \sqrt[8]{6^3} = 6^{3/8} \] Since we need the real part, we can express it as: \[ \sqrt[8]{216} = 6^{3/8} \] 5. **Final Answer**: The value of \(\sqrt[8]{xyz}\) is: \[ \sqrt[8]{-216} = -6^{3/8} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If x+y+z=11, x^2+y^2+z^2=133 and x^3+y^3+z^3= 881 , then the value of root(3)(xyz) is:

If x + y + z = 13, x^2+y^2+z^2=133 and x^3+y^3+z^3=847 , then the value of root(3)(xyz) is : यदि x + y + z = 13, x^2+y^2+z^2=133 और x^3+y^3+z^3=847 , है तो root(3)(xyz) का मान ज्ञात करें:

If x+y+z=11, x^2+y^2+z^2=133 and x^3+y^3+z^3=881 , then the value of root (3)(xyz) is: यदि x+y+z=11, x^2+y^2+z^2=133 तथा x^3+y^3+z^3=881 है, तो root (3)(xyz) का मान क्या होगा ?

If x + y + z = 10, x ^(3) + y ^(3) + z ^(3) = 75 and xyz = 15, then find the value of x ^(2) + y ^(2) + z ^(2) - xy - yz - zx