Home
Class 14
MATHS
If a^(2) + b^(2) + c^(2) + 96 = 8(a + b ...

If `a^(2) + b^(2) + c^(2) + 96 = 8(a + b - 2c)`, then `sqrt(ab - bc + ca)` is equal to :

A

6

B

`2sqrt(3)`

C

`2sqrt(2)`

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 + b^2 + c^2 + 96 = 8(a + b - 2c) \) and find the value of \( \sqrt{ab - bc + ca} \), we will follow these steps: ### Step 1: Rearrange the equation Start by moving all terms to one side of the equation: \[ a^2 + b^2 + c^2 + 96 - 8a - 8b + 16c = 0 \] ### Step 2: Group terms Rearranging gives us: \[ a^2 - 8a + b^2 - 8b + c^2 + 16c + 96 = 0 \] ### Step 3: Complete the square for \( a \) To complete the square for \( a \): \[ a^2 - 8a = (a - 4)^2 - 16 \] So, substituting back: \[ (a - 4)^2 - 16 \] ### Step 4: Complete the square for \( b \) Now for \( b \): \[ b^2 - 8b = (b - 4)^2 - 16 \] Substituting back gives: \[ (b - 4)^2 - 16 \] ### Step 5: Complete the square for \( c \) Now for \( c \): \[ c^2 + 16c = (c + 8)^2 - 64 \] Substituting back gives: \[ (c + 8)^2 - 64 \] ### Step 6: Substitute completed squares back into the equation Now, substituting all completed squares back into the equation: \[ ((a - 4)^2 - 16) + ((b - 4)^2 - 16) + ((c + 8)^2 - 64) + 96 = 0 \] This simplifies to: \[ (a - 4)^2 + (b - 4)^2 + (c + 8)^2 + 0 = 0 \] ### Step 7: Set each squared term to zero Since the sum of squares is zero, each term must be zero: \[ (a - 4)^2 = 0 \implies a = 4 \] \[ (b - 4)^2 = 0 \implies b = 4 \] \[ (c + 8)^2 = 0 \implies c = -8 \] ### Step 8: Calculate \( \sqrt{ab - bc + ca} \) Now we substitute \( a = 4 \), \( b = 4 \), and \( c = -8 \) into \( \sqrt{ab - bc + ca} \): \[ ab = 4 \cdot 4 = 16 \] \[ bc = 4 \cdot (-8) = -32 \] \[ ca = (-8) \cdot 4 = -32 \] Now substituting these values: \[ \sqrt{16 - (-32) + (-32)} = \sqrt{16 + 32 - 32} = \sqrt{16} = 4 \] ### Final Answer Thus, the value of \( \sqrt{ab - bc + ca} \) is \( \boxed{4} \).
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^2+b^2+c^2=21 , and a + b + c = 7, then (ab + bc + ca) is equal to : यदि a^2+b^2+c^2=21 है तथा a +b + c = 7 है, तो (ab + bc + ca) का मान क्या होगा ?

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (a+b)/(c ) + (b+c)/(a) + (c+a)/(b) =?

If ab + bc + ca = 8 and a+b+c = 12 then (a^(2) + b^(2) + c^(2)) is equal to :

If a^(2) +b^(2) +c^(2) = ab + bc + ca then (c )/(a+b) + (b)/(a +c)+ (c )/(a+b) = ?