Home
Class 14
MATHS
The value of (2(6)/(7)"of"4(1)/(5)div(2)...

The value of `(2(6)/(7)"of"4(1)/(5)div(2)/(3))xx1(1)/(9)div((3)/(2)xx2(2)/(3)"of"(1)/(2)div(1)/(4))` is :

A

5

B

`(1)/(8)`

C

8

D

`(1)/(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \left(2 \frac{6}{7} \text{ of } 4 \frac{1}{5} \div \frac{2}{3}\right) \times 1 \frac{1}{9} \div \left(\frac{3}{2} \times 2 \frac{2}{3} \text{ of } \frac{1}{2} \div \frac{1}{4}\right) \), we will follow the order of operations (BODMAS/BIDMAS). ### Step 1: Convert Mixed Numbers to Improper Fractions First, we convert the mixed numbers to improper fractions. - \( 2 \frac{6}{7} = \frac{2 \times 7 + 6}{7} = \frac{14 + 6}{7} = \frac{20}{7} \) - \( 4 \frac{1}{5} = \frac{4 \times 5 + 1}{5} = \frac{20 + 1}{5} = \frac{21}{5} \) - \( 1 \frac{1}{9} = \frac{1 \times 9 + 1}{9} = \frac{9 + 1}{9} = \frac{10}{9} \) - \( 2 \frac{2}{3} = \frac{2 \times 3 + 2}{3} = \frac{6 + 2}{3} = \frac{8}{3} \) Now, our expression looks like this: \[ \left(\frac{20}{7} \text{ of } \frac{21}{5} \div \frac{2}{3}\right) \times \frac{10}{9} \div \left(\frac{3}{2} \times \frac{8}{3} \text{ of } \frac{1}{2} \div \frac{1}{4}\right) \] ### Step 2: Solve the "of" Operations The "of" operation means multiplication. - \( \frac{20}{7} \text{ of } \frac{21}{5} = \frac{20}{7} \times \frac{21}{5} = \frac{420}{35} = 12 \) - \( \frac{3}{2} \text{ of } \frac{1}{2} = \frac{3}{2} \times \frac{1}{2} = \frac{3}{4} \) Now, the expression becomes: \[ \left(12 \div \frac{2}{3}\right) \times \frac{10}{9} \div \left(\frac{3}{2} \times \frac{8}{3} \div \frac{1}{4}\right) \] ### Step 3: Solve the Division For \( 12 \div \frac{2}{3} \): \[ 12 \div \frac{2}{3} = 12 \times \frac{3}{2} = \frac{36}{2} = 18 \] For \( \frac{3}{2} \times \frac{8}{3} \div \frac{1}{4} \): \[ \frac{3}{2} \times \frac{8}{3} = 4 \] Then, \[ 4 \div \frac{1}{4} = 4 \times 4 = 16 \] ### Step 4: Substitute Back into the Expression Now, we substitute back into the expression: \[ 18 \times \frac{10}{9} \div 16 \] ### Step 5: Solve the Remaining Operations First, calculate \( 18 \times \frac{10}{9} \): \[ 18 \times \frac{10}{9} = \frac{180}{9} = 20 \] Now, divide by 16: \[ 20 \div 16 = \frac{20}{16} = \frac{5}{4} \] ### Final Answer The value of the expression is \( \frac{5}{4} \). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

4(1)/(2)xx4(1)/(3)-8(1)/(3)div5(2)/(3)=?

The value of (2)/(3)div(3)/(1)" of "(4)/(9)-(4)/(5)xx1 (1)/(9)div(8)/(15)+(3)/(4)div(1)/(2) is :

(5)/(6)div(6)/(7)xx?-(8)/(9)div1(3)/(5)+(3)/(4)xx3(1)/(3)=2(7)/(9)

The Value of (2 6/7 of 4 1/5 div 2/3)xx1 1/9 div (3/4xx2 2/3 of 1/2 div 1/4) is : (2 6/7 of 4 1/5 div 2/3)xx1 1/9 div (3/4xx2 2/3 of 1/2 div 1/4) का मान है :

The value ok ((1(1)/(9) xx 1 (1)/(20) div (21)/(38)-(1)/(3))div(2 (4)/(9)div 1(7)/(15) of ""(3)/(5)))/((1)/(5) of (1)/(5) div (1)/(125) - (1)/(125) div (1)/(5) of"" (1)/(5)) lies between......

The value of (2)/(5) div (3)/(10) of (4)/(9) - (4)/(5) xx 1 (1)/(9) div (8)/(15) - (3)/(4) + (3)/(4) div (1)/(2) is: (a)7/9 (b)23/6 (c)4/3 (d)25/12

The value of 4(2)/(5) div { (1(1)/(2)-3(1)/(5)) 3(2)/(5) +(2(1)/(5) div 1(1)/(2) + 4(2)/(5)) +(1)/(2)} is :

The value of ((7)/(8) div 5(1)/(4) xx 7(1)/(5) - (3)/(20) " of " (2)/(3)) div (1)/(2) + ((3)/(5) xx 7(1)/(2) + (2)/(3) div (8)/(15)) is equal to 7+k , where k =