Home
Class 14
MATHS
The value ((cos9^(@)+sin81^(@))(sec9^(@)...

The value `((cos9^(@)+sin81^(@))(sec9^(@)+cosec81^(@)))/(sin56^(@) sec34^(@)+cos25^(@)cosec65^(@))` is :

A

`(1)/(2)`

B

4

C

`(1)/(4)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{(\cos 9^\circ + \sin 81^\circ)(\sec 9^\circ + \csc 81^\circ)}{(\sin 56^\circ \sec 34^\circ + \cos 25^\circ \csc 65^\circ)}, \] we will simplify both the numerator and the denominator step by step. ### Step 1: Simplifying the Numerator 1. **Recognize Trigonometric Identities**: We know that \(\sin(90^\circ - \theta) = \cos(\theta)\) and \(\cos(90^\circ - \theta) = \sin(\theta)\). Thus, we can rewrite \(\sin 81^\circ\) as \(\cos 9^\circ\) since \(81^\circ = 90^\circ - 9^\circ\). Therefore, \[ \cos 9^\circ + \sin 81^\circ = \cos 9^\circ + \cos 9^\circ = 2 \cos 9^\circ. \] 2. **Simplifying the Second Part**: For \(\sec 9^\circ + \csc 81^\circ\), we can rewrite \(\csc 81^\circ\) as \(\sec 9^\circ\) using the same identity: \[ \sec 9^\circ + \csc 81^\circ = \sec 9^\circ + \sec 9^\circ = 2 \sec 9^\circ. \] 3. **Combining the Parts**: Now, substituting back into the numerator: \[ (\cos 9^\circ + \sin 81^\circ)(\sec 9^\circ + \csc 81^\circ) = (2 \cos 9^\circ)(2 \sec 9^\circ) = 4 \cos 9^\circ \sec 9^\circ. \] Since \(\cos 9^\circ \sec 9^\circ = 1\), we have: \[ 4 \cos 9^\circ \sec 9^\circ = 4. \] ### Step 2: Simplifying the Denominator 1. **Using Trigonometric Identities**: For \(\sin 56^\circ \sec 34^\circ\), we know that \(\sec 34^\circ = \frac{1}{\cos 34^\circ}\). Thus: \[ \sin 56^\circ \sec 34^\circ = \frac{\sin 56^\circ}{\cos 34^\circ}. \] Also, since \(34^\circ = 90^\circ - 56^\circ\), we have \(\cos 34^\circ = \sin 56^\circ\). Therefore: \[ \sin 56^\circ \sec 34^\circ = \frac{\sin 56^\circ}{\sin 56^\circ} = 1. \] 2. **For the Second Part**: For \(\cos 25^\circ \csc 65^\circ\), we know that \(\csc 65^\circ = \frac{1}{\sin 65^\circ}\) and \(\sin 65^\circ = \cos 25^\circ\) (since \(65^\circ = 90^\circ - 25^\circ\)): \[ \cos 25^\circ \csc 65^\circ = \frac{\cos 25^\circ}{\cos 25^\circ} = 1. \] 3. **Combining the Parts**: Therefore, the denominator simplifies to: \[ \sin 56^\circ \sec 34^\circ + \cos 25^\circ \csc 65^\circ = 1 + 1 = 2. \] ### Step 3: Final Calculation Now we can substitute the simplified numerator and denominator back into the original expression: \[ \frac{4}{2} = 2. \] Thus, the final value of the expression is: \[ \boxed{2}. \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of ((cos 9^@+sin81^@)(sec9^@+ cosec81^@))/(sin56^@ sec34^@+cos25^@ cosec 65^@) is:

The value of ((cos9^@ + sin81^@) (sec9^@+ cosec81^@))/(sin56^@.sec34^@ + cos25^@ cosec65^@) is: ((cos9^@ + sin81^@) (sec9^@+ cosec81^@))/(sin56^@.sec34^@ + cos25^@ cosec65^@) का मान है:

((cos 9^@+sin 81^@)(sec 9^@+ cosec 81^@))/(sin 56^@ sec 34^@+ cos 25^@ cosec 65^@) =?

The value of (sin 20^(@)cos70^(@)+ cos20^(@)sin70^(@))/(sin23^(@)"cosec"23^(@)+cos23^(@)sec23^(@)) is _________.

The value of ((cos9^circ+sin81^circ)(sec9^circ+cosec81^circ))/(sin56^circ sec34^circ+ cos25^circ cosec65^circ) is: ((cos9^circ+sin81^circ)(sec9^circ+cosec81^circ))/(sin56^circ sec34^circ+ cos25^circ cosec65^circ) का मान है:

The value of ((cos9 + sin81) (sec9+ cosec81))/(sin56.sec34 + cos25.cosec65) is: ((cos9 + sin81) (sec9+ cosec81))/(sin56.sec34 + cos25.cosec65) का मान ज्ञात करें |

The value of ((cos9^@ + sin81^@) (sec9^@+ cosec81^@)) /(2 sin^2 63^@+1+2sin^2 27^@) is: ((cos9^@ + sin81^@) (sec9^@+ cosec81^@)) /(2 sin^2 63^@+1+2sin^2 27^@) का मान होगा:

the value of (cos81^(@))/(sin3^(@)sin57^(@)sin63^(@))=

The value of is: ((cos9^circ+sin81^circ)(sec9^circ+cosec81^circ))/(sin56^circ sec34^circ+cos25^circcosec65^circ) ((cos9^circ+sin81^circ)(sec9^circ+cosec81^circ))/(sin56^circ sec34^circ+cos25^circcosec65^circ) का मान है: