Home
Class 14
MATHS
If a^(3) + b^(3) = 218 and a + b = 2, th...

If `a^(3) + b^(3) = 218 and a + b = 2`, then the value of ab is :

A

34

B

-31

C

-35

D

32

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: 1. \( a^3 + b^3 = 218 \) 2. \( a + b = 2 \) We want to find the value of \( ab \). ### Step 1: Use the identity for the sum of cubes We know that the sum of cubes can be expressed as: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] From the second equation, we have \( a + b = 2 \). ### Step 2: Substitute \( a + b \) into the identity Substituting \( a + b \) into the identity gives us: \[ a^3 + b^3 = 2(a^2 - ab + b^2) \] ### Step 3: Express \( a^2 + b^2 \) in terms of \( ab \) We can express \( a^2 + b^2 \) using the identity: \[ a^2 + b^2 = (a + b)^2 - 2ab \] Substituting \( a + b = 2 \) into this gives: \[ a^2 + b^2 = 2^2 - 2ab = 4 - 2ab \] ### Step 4: Substitute \( a^2 + b^2 \) back into the equation Now we substitute \( a^2 + b^2 \) back into the equation for \( a^3 + b^3 \): \[ a^3 + b^3 = 2((4 - 2ab) - ab) = 2(4 - 3ab) \] So we have: \[ a^3 + b^3 = 8 - 6ab \] ### Step 5: Set the equation equal to 218 Now we set this equal to the first equation: \[ 8 - 6ab = 218 \] ### Step 6: Solve for \( ab \) Rearranging gives: \[ -6ab = 218 - 8 \] \[ -6ab = 210 \] \[ ab = -\frac{210}{6} = -35 \] Thus, the value of \( ab \) is: \[ \boxed{-35} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(3) + b^(3) = 152 and a + b = 8 then what is the value of ab?

If a^3+b^3=218 and a+b=2, tthen the value of ab is : यदि a^3+b^3=218 तथा a+b=2 है, तो ab का मान ज्ञात करें |

If 2^a=3 and 9^b=4 then the value of a.b is

If a^3+b^3=62 and a+b = 2, then the value of ab is: यदि a^3+b^3=62 और a + b = 2, ab का मान ज्ञात करें :