Home
Class 14
MATHS
The value of the expression (cos^(6)thet...

The value of the expression `(cos^(6)theta+sin^(6)theta-1)(tan^(2)theta+cot^(2)theta+2)` is :

A

1

B

-1

C

-3

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\cos^6 \theta + \sin^6 \theta - 1)(\tan^2 \theta + \cot^2 \theta + 2)\), we will break it down step by step. ### Step 1: Simplify \(\cos^6 \theta + \sin^6 \theta - 1\) We can use the identity for the sum of cubes: \[ a^3 + b^3 = (a + b)(a^2 - ab + b^2) \] Let \(a = \cos^2 \theta\) and \(b = \sin^2 \theta\). Then: \[ \cos^6 \theta + \sin^6 \theta = (\cos^2 \theta)^3 + (\sin^2 \theta)^3 = (\cos^2 \theta + \sin^2 \theta)((\cos^2 \theta)^2 - \cos^2 \theta \sin^2 \theta + (\sin^2 \theta)^2) \] Since \(\cos^2 \theta + \sin^2 \theta = 1\), we have: \[ \cos^6 \theta + \sin^6 \theta = 1 \cdot \left(\cos^4 \theta - \cos^2 \theta \sin^2 \theta + \sin^4 \theta\right) \] Now, we can simplify \(\cos^4 \theta + \sin^4 \theta\): \[ \cos^4 \theta + \sin^4 \theta = (\cos^2 \theta + \sin^2 \theta)^2 - 2\cos^2 \theta \sin^2 \theta = 1 - 2\cos^2 \theta \sin^2 \theta \] Thus: \[ \cos^6 \theta + \sin^6 \theta = (1 - 2\cos^2 \theta \sin^2 \theta) - \cos^2 \theta \sin^2 \theta = 1 - 3\cos^2 \theta \sin^2 \theta \] So: \[ \cos^6 \theta + \sin^6 \theta - 1 = -3\cos^2 \theta \sin^2 \theta \] ### Step 2: Simplify \(\tan^2 \theta + \cot^2 \theta + 2\) Recall that: \[ \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta}, \quad \cot^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta} \] Thus: \[ \tan^2 \theta + \cot^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} \] Finding a common denominator: \[ \tan^2 \theta + \cot^2 \theta = \frac{\sin^4 \theta + \cos^4 \theta}{\sin^2 \theta \cos^2 \theta} \] Using the earlier result: \[ \sin^4 \theta + \cos^4 \theta = 1 - 2\sin^2 \theta \cos^2 \theta \] Thus: \[ \tan^2 \theta + \cot^2 \theta = \frac{1 - 2\sin^2 \theta \cos^2 \theta}{\sin^2 \theta \cos^2 \theta} \] Adding 2: \[ \tan^2 \theta + \cot^2 \theta + 2 = \frac{1 - 2\sin^2 \theta \cos^2 \theta + 2\sin^2 \theta \cos^2 \theta}{\sin^2 \theta \cos^2 \theta} = \frac{1 + \sin^2 \theta \cos^2 \theta}{\sin^2 \theta \cos^2 \theta} \] ### Step 3: Combine the results Now we can combine the two parts: \[ (\cos^6 \theta + \sin^6 \theta - 1)(\tan^2 \theta + \cot^2 \theta + 2) = (-3\cos^2 \theta \sin^2 \theta) \left(\frac{1 + \sin^2 \theta \cos^2 \theta}{\sin^2 \theta \cos^2 \theta}\right) \] This simplifies to: \[ -3(1 + \sin^2 \theta \cos^2 \theta) = -3 - 3\sin^2 \theta \cos^2 \theta \] Since \(\sin^2 \theta \cos^2 \theta\) is a positive term, the expression evaluates to: \[ -3 \] ### Final Answer: The value of the expression is \(-3\).
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the expression cos^(6)theta+sin^(6)theta+3sin^(2)theta cos^(2)theta=

The value of the expression 2(sin^(6)theta+cos^(6)theta)-3(sin^(4)theta+cos^(4)theta)+1 is

The value of the expression sin^(6)theta+cos^(6)theta+3sin^(2)theta*cos^(2)theta equals

sin^(6)theta+cos^(6)theta+3sin^(2)theta cos^(2)theta=1

Prove that cos^(6)theta+sin^(6)theta=1-3sin^(2)theta cos^(2)theta

int(sin^(6)theta+cos^(6)theta)/(sin^(2)theta cos^(2)theta)d theta=

Prove that sin^(6)theta+cos^(6)theta=1-3sin^(2)theta cos^(2)theta

Minimum value of the expression cos^(2)theta-(6sin theta cos theta)+3sin^(2)theta+2, is