Home
Class 14
MATHS
If sqrt(86-60sqrt(2)) = a - bsqrt2 then ...

If `sqrt(86-60sqrt(2)) = a - bsqrt2` then what will be the value of `sqrt(a^(2) + b^(2))`, correct to one decimal place ?

A

7.2

B

8.2

C

8.4

D

7.8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \sqrt{86 - 60\sqrt{2}} = a - b\sqrt{2} \), we will follow these steps: ### Step 1: Square both sides Start by squaring both sides of the equation to eliminate the square root: \[ 86 - 60\sqrt{2} = (a - b\sqrt{2})^2 \] ### Step 2: Expand the right side Now, expand the right side using the formula \( (x - y)^2 = x^2 - 2xy + y^2 \): \[ (a - b\sqrt{2})^2 = a^2 - 2ab\sqrt{2} + 2b^2 \] ### Step 3: Set the equation Now, we can set the equation from Step 1: \[ 86 - 60\sqrt{2} = a^2 + 2b^2 - 2ab\sqrt{2} \] ### Step 4: Compare coefficients Now, we can compare the coefficients of the rational and irrational parts: 1. For the rational part: \[ a^2 + 2b^2 = 86 \] 2. For the irrational part: \[ -2ab = -60 \implies 2ab = 60 \implies ab = 30 \] ### Step 5: Solve the system of equations Now we have a system of equations: 1. \( a^2 + 2b^2 = 86 \) 2. \( ab = 30 \) From the second equation, we can express \( a \) in terms of \( b \): \[ a = \frac{30}{b} \] Substituting this into the first equation: \[ \left(\frac{30}{b}\right)^2 + 2b^2 = 86 \] ### Step 6: Simplify the equation This gives us: \[ \frac{900}{b^2} + 2b^2 = 86 \] Multiply through by \( b^2 \) to eliminate the fraction: \[ 900 + 2b^4 = 86b^2 \] Rearranging gives us a polynomial equation: \[ 2b^4 - 86b^2 + 900 = 0 \] ### Step 7: Let \( x = b^2 \) Let \( x = b^2 \). Then the equation becomes: \[ 2x^2 - 86x + 900 = 0 \] ### Step 8: Use the quadratic formula Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{86 \pm \sqrt{(-86)^2 - 4 \cdot 2 \cdot 900}}{2 \cdot 2} \] Calculating the discriminant: \[ x = \frac{86 \pm \sqrt{7396 - 7200}}{4} = \frac{86 \pm \sqrt{196}}{4} = \frac{86 \pm 14}{4} \] ### Step 9: Solve for \( x \) This gives us two possible values for \( x \): 1. \( x = \frac{100}{4} = 25 \) 2. \( x = \frac{72}{4} = 18 \) ### Step 10: Find \( b \) and \( a \) Taking the square root gives us: 1. \( b^2 = 25 \implies b = 5 \) 2. \( b^2 = 18 \implies b = \sqrt{18} = 3\sqrt{2} \) Now using \( ab = 30 \): 1. If \( b = 5 \), then \( a = \frac{30}{5} = 6 \). 2. If \( b = 3\sqrt{2} \), then \( a = \frac{30}{3\sqrt{2}} = 5\sqrt{2} \). ### Step 11: Calculate \( \sqrt{a^2 + b^2} \) Now, we calculate \( \sqrt{a^2 + b^2} \): 1. For \( a = 6 \) and \( b = 5 \): \[ \sqrt{6^2 + 5^2} = \sqrt{36 + 25} = \sqrt{61} \] 2. For \( a = 5\sqrt{2} \) and \( b = 3\sqrt{2} \): \[ \sqrt{(5\sqrt{2})^2 + (3\sqrt{2})^2} = \sqrt{50 + 18} = \sqrt{68} \] ### Step 12: Final calculation Calculating \( \sqrt{61} \) and \( \sqrt{68} \): 1. \( \sqrt{61} \approx 7.81 \) 2. \( \sqrt{68} \approx 8.25 \) ### Conclusion The final answer, correct to one decimal place, is: \[ \sqrt{61} \approx 7.8 \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(86-60sqrt2)=a-b sqrt2 , then what will be the value of sqrt(a^2+b^2) , correct to one decimal place ? यदि sqrt(86-60sqrt2)=a-b sqrt2 है, तो एक दशमलव स्थान तक sqrt(a^2+b^2) का मान ज्ञात करें |

If sqrt(86-60 sqrt2)=a-b sqrt2 , then what will be the value of sqrt(a^2+b^2) , correct to one decimal place?

If x=sqrt(2+sqrt(2+sqrt(2+...))) then what will be the value of x?

If (4+2sqrt5)/(4-3sqrt5) = a+bsqrt5 ,then

Evaluate sqrt (2.8) correct up to two places of decimal.