Home
Class 14
MATHS
What is the value of cosec (65^(@) + th...

What is the value of
cosec `(65^(@) + theta) - sec(25^(@) - theta) + tan^(2) 20^(@) - cosec^(2) 70^(@)` ?

A

1

B

2

C

0

D

-1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \csc(65^\circ + \theta) - \sec(25^\circ - \theta) + \tan^2(20^\circ) - \csc^2(70^\circ) \), we can follow these steps: ### Step 1: Rewrite the cosecant and secant functions We know that: \[ \csc(x) = \frac{1}{\sin(x)} \quad \text{and} \quad \sec(x) = \frac{1}{\cos(x)} \] Thus, we can rewrite the expression as: \[ \frac{1}{\sin(65^\circ + \theta)} - \frac{1}{\cos(25^\circ - \theta)} + \tan^2(20^\circ) - \csc^2(70^\circ) \] ### Step 2: Use trigonometric identities Using the identity \( \sin(90^\circ - x) = \cos(x) \), we can express: \[ \sin(65^\circ + \theta) = \cos(25^\circ - \theta) \] This means: \[ \csc(65^\circ + \theta) = \sec(25^\circ - \theta) \] ### Step 3: Substitute the identities into the expression Now substituting back into the expression, we have: \[ \sec(25^\circ - \theta) - \sec(25^\circ - \theta) + \tan^2(20^\circ) - \csc^2(70^\circ) \] ### Step 4: Simplify the expression The first two terms cancel each other out: \[ 0 + \tan^2(20^\circ) - \csc^2(70^\circ) \] Now, we know that: \[ \csc^2(70^\circ) = 1 + \cot^2(70^\circ) \] And since \( \cot(70^\circ) = \tan(20^\circ) \), we can write: \[ \csc^2(70^\circ) = 1 + \tan^2(20^\circ) \] ### Step 5: Substitute and simplify further Now substituting this back into our expression gives: \[ \tan^2(20^\circ) - (1 + \tan^2(20^\circ)) \] This simplifies to: \[ \tan^2(20^\circ) - 1 - \tan^2(20^\circ) = -1 \] ### Final Answer Thus, the value of the original expression is: \[ \boxed{-1} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of cosec (65^circ+ θ) – sec(25^circ – θ) + tan^(2)20^circ – cosec^(2)70^circ ? cosec (65^circ+ θ) – sec(25^circ – θ) + tan^(2)20^circ – cosec^(2)70^circ का मान क्या है?

What is the value of ( tan^(2) 25^(@) )/( cosec^(2) 65^(@) ) + ( cot^(2) 25^(@) ) /( sec^(2) 65^(@) ) + 2 tan 20^(@) tan 45^(@) tan 70^(@)?

What is the value of (tan theta cosec theta)^(2)- (sin theta sec theta)^(2) .

What is the value of (tan theta "cosec" theta )^(2) -( sin theta sec theta) ^(2)

The value of 2 sec^(2) theta - sec^(4) theta - 2 cosec^(2)theta + cosec^(4) theta is

What is the value of (sin theta)/(cosec theta)+(cos theta)/(sec theta) ?

If tan theta= 1/sqrt5 , find the value of cosec^2 theta-sec^2 theta

The value of (tan theta cosec theta)^(2) - (sin theta sec theta)^(2) is: