Home
Class 14
MATHS
If 5 sin theta - 4 cos theta = 0, 0^(@) ...

If `5 sin theta - 4 cos theta = 0, 0^(@) lt theta lt 90^(@)`, then the value of `(5sintheta-2costheta)/(sintheta+3costheta)` is :

A

`(5)/(8)`

B

`(2)/(7)`

C

`(3)/(8)`

D

`(3)/(7)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 5 \sin \theta - 4 \cos \theta = 0 \) for \( 0^\circ < \theta < 90^\circ \) and find the value of \( \frac{5 \sin \theta - 2 \cos \theta}{\sin \theta + 3 \cos \theta} \), follow these steps: ### Step 1: Solve for \( \sin \theta \) and \( \cos \theta \) From the equation \( 5 \sin \theta - 4 \cos \theta = 0 \), we can rearrange it to find the relationship between \( \sin \theta \) and \( \cos \theta \): \[ 5 \sin \theta = 4 \cos \theta \] Dividing both sides by \( \cos \theta \) (since \( \cos \theta \neq 0 \) in the given range): \[ \frac{\sin \theta}{\cos \theta} = \frac{4}{5} \] This implies: \[ \tan \theta = \frac{4}{5} \] ### Step 2: Express \( \sin \theta \) and \( \cos \theta \) in terms of \( \tan \theta \) Using the identity \( \tan \theta = \frac{\sin \theta}{\cos \theta} \), we can express \( \sin \theta \) and \( \cos \theta \) in terms of \( k \): Let \( \sin \theta = 4k \) and \( \cos \theta = 5k \) for some \( k \). Using the Pythagorean identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ (4k)^2 + (5k)^2 = 1 \] \[ 16k^2 + 25k^2 = 1 \] \[ 41k^2 = 1 \] \[ k^2 = \frac{1}{41} \] \[ k = \frac{1}{\sqrt{41}} \] Thus, \[ \sin \theta = \frac{4}{\sqrt{41}}, \quad \cos \theta = \frac{5}{\sqrt{41}} \] ### Step 3: Substitute \( \sin \theta \) and \( \cos \theta \) into the expression Now substitute \( \sin \theta \) and \( \cos \theta \) into the expression \( \frac{5 \sin \theta - 2 \cos \theta}{\sin \theta + 3 \cos \theta} \): Numerator: \[ 5 \sin \theta - 2 \cos \theta = 5 \left(\frac{4}{\sqrt{41}}\right) - 2 \left(\frac{5}{\sqrt{41}}\right) \] \[ = \frac{20}{\sqrt{41}} - \frac{10}{\sqrt{41}} = \frac{10}{\sqrt{41}} \] Denominator: \[ \sin \theta + 3 \cos \theta = \frac{4}{\sqrt{41}} + 3 \left(\frac{5}{\sqrt{41}}\right) \] \[ = \frac{4}{\sqrt{41}} + \frac{15}{\sqrt{41}} = \frac{19}{\sqrt{41}} \] ### Step 4: Simplify the expression Now, substituting the numerator and denominator back into the expression: \[ \frac{5 \sin \theta - 2 \cos \theta}{\sin \theta + 3 \cos \theta} = \frac{\frac{10}{\sqrt{41}}}{\frac{19}{\sqrt{41}}} \] The \( \sqrt{41} \) cancels out: \[ = \frac{10}{19} \] ### Final Answer Thus, the value of \( \frac{5 \sin \theta - 2 \cos \theta}{\sin \theta + 3 \cos \theta} \) is: \[ \frac{10}{19} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(sin3theta-cos3theta)/(sintheta+costheta)+1 =

If sintheta - cos theta = 7/13 and 0 lt theta lt 90^(@) ,then the value of sin theta + cos theta is:

If tan^(2)theta - 3sectheta + 3=0, 0^(@) lt theta lt 90^(@) , then the value of sintheta + cos theta is:

If sintheta-costheta=0,0^(@)ltthetalt90^(@) , then the value of sin^(4)theta+cos^(4)theta is :

If, 5cot theta =3 ,Find the value of (6sintheta-3costheta)/(7sintheta+3costheta)

If 5 tan theta = 4 then value of ((5sintheta-3cos theta)/(5sin theta+3costheta)) is

If 4-2sin^(2)theta-5costheta=0,0^(@)ltthetalt90^(@) , then the value of (sintheta+tantheta) is :