Home
Class 14
MATHS
If sintheta=sqrt3costheta,theta^(@)ltth...

If ` sintheta=sqrt3costheta,theta^(@)ltthetalt90^(@)` then the value of `2sin^(2) theta + sec^(2) theta + sin theta sec theta + cosec theta` is ?

A

`(33+10sqrt(3))/(6)`

B

`(19+20sqrt3)/(6)`

C

`(33+10sqrt3)/(3)`

D

`(19+10sqrt3)/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the equation given: 1. **Given Equation**: \[ \sin \theta = \sqrt{3} \cos \theta \] 2. **Dividing both sides by \(\cos \theta\)**: \[ \frac{\sin \theta}{\cos \theta} = \sqrt{3} \] This implies: \[ \tan \theta = \sqrt{3} \] 3. **Finding the angle \(\theta\)**: Since \(\tan \theta = \sqrt{3}\), we know: \[ \theta = 60^\circ \] (as \(\tan 60^\circ = \sqrt{3}\) and \(\theta\) is between \(0^\circ\) and \(90^\circ\)). 4. **Calculating the required expression**: We need to find: \[ 2 \sin^2 \theta + \sec^2 \theta + \sin \theta \sec \theta + \csc \theta \] 5. **Calculating each term**: - **Calculate \(\sin 60^\circ\)**: \[ \sin 60^\circ = \frac{\sqrt{3}}{2} \] - **Calculate \(\cos 60^\circ\)**: \[ \cos 60^\circ = \frac{1}{2} \] - **Calculate \(\sec 60^\circ\)**: \[ \sec 60^\circ = \frac{1}{\cos 60^\circ} = 2 \] - **Calculate \(\csc 60^\circ\)**: \[ \csc 60^\circ = \frac{1}{\sin 60^\circ} = \frac{2}{\sqrt{3}} \] 6. **Substituting values into the expression**: - **Calculating \(2 \sin^2 60^\circ\)**: \[ 2 \left(\frac{\sqrt{3}}{2}\right)^2 = 2 \cdot \frac{3}{4} = \frac{3}{2} \] - **Calculating \(\sec^2 60^\circ\)**: \[ \sec^2 60^\circ = (2)^2 = 4 \] - **Calculating \(\sin 60^\circ \sec 60^\circ\)**: \[ \sin 60^\circ \sec 60^\circ = \left(\frac{\sqrt{3}}{2}\right) \cdot 2 = \sqrt{3} \] 7. **Putting it all together**: Now substituting everything back into the expression: \[ 2 \sin^2 60^\circ + \sec^2 60^\circ + \sin 60^\circ \sec 60^\circ + \csc 60^\circ = \frac{3}{2} + 4 + \sqrt{3} + \frac{2}{\sqrt{3}} \] 8. **Finding a common denominator**: The common denominator is \(2\sqrt{3}\): \[ = \frac{3\sqrt{3}}{2\sqrt{3}} + \frac{8\sqrt{3}}{2\sqrt{3}} + \frac{2}{\sqrt{3}} = \frac{3\sqrt{3} + 8\sqrt{3} + 4}{2\sqrt{3}} = \frac{11\sqrt{3}}{2\sqrt{3}} = \frac{11}{2} \] Thus, the final answer is: \[ \frac{11}{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sintheta = sqrt3 costheta, 0^circ lt theta lt 90^circ , then the value of 2sin^(2)theta + sec^(2)theta + sin theta sec theta + cosec theta is: यदि sintheta = sqrt3 costheta, 0^circ lt theta lt 90^circ , , तो 2sin^(2)theta + sec^(2)theta + sin theta sec theta + cosec theta का मान है:

If sin theta= sqrt 3 cos theta, 0^@< theta< 90^@ , then the value of 2 sin^2 theta+ sec^2 theta+ sin theta sec theta+ cosec theta is :

If 7 sin^(2) theta + 3 cos^(2) theta =4 , "then" sec theta + cosec theta is equal to

If sintheta-costheta=0,0^(@)ltthetalt90^(@) , then the value of sin^(4)theta+cos^(4)theta is :

The value of 2 sec^(2) theta - sec^(4) theta - 2 cosec^(2)theta + cosec^(4) theta is

The value of sin^2 theta cos^2 theta (sec^2 theta + cosec^2 theta ) is

If 7 sin^2theta + 3 cos^2theta= 4 then sec theta + cosec theta is equal to: