Home
Class 14
MATHS
sqrt((cottheta+costheta)/(cottheta-costh...

`sqrt((cottheta+costheta)/(cottheta-costheta))` is equal to :

A

`sec theta - tan theta`

B

`1 + sec theta tan theta`

C

`1 - sec theta tan theta`

D

`sec theta + tan theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \sqrt{\frac{\cot \theta + \cos \theta}{\cot \theta - \cos \theta}} \), we can follow these steps: ### Step 1: Rewrite cotangent in terms of sine and cosine Recall that \( \cot \theta = \frac{\cos \theta}{\sin \theta} \). Substitute this into the expression: \[ \sqrt{\frac{\frac{\cos \theta}{\sin \theta} + \cos \theta}{\frac{\cos \theta}{\sin \theta} - \cos \theta}} \] ### Step 2: Simplify the numerator and denominator The numerator becomes: \[ \frac{\cos \theta}{\sin \theta} + \cos \theta = \frac{\cos \theta + \cos \theta \sin \theta}{\sin \theta} = \frac{\cos \theta (1 + \sin \theta)}{\sin \theta} \] The denominator becomes: \[ \frac{\cos \theta}{\sin \theta} - \cos \theta = \frac{\cos \theta - \cos \theta \sin \theta}{\sin \theta} = \frac{\cos \theta (1 - \sin \theta)}{\sin \theta} \] ### Step 3: Substitute back into the square root Now substitute the simplified numerator and denominator back into the square root: \[ \sqrt{\frac{\frac{\cos \theta (1 + \sin \theta)}{\sin \theta}}{\frac{\cos \theta (1 - \sin \theta)}{\sin \theta}}} \] ### Step 4: Cancel out common terms The \( \sin \theta \) in the numerator and denominator cancels out, and the \( \cos \theta \) also cancels out (assuming \( \cos \theta \neq 0 \)): \[ \sqrt{\frac{1 + \sin \theta}{1 - \sin \theta}} \] ### Step 5: Rationalize the expression To simplify further, multiply the numerator and denominator by \( 1 + \sin \theta \): \[ \sqrt{\frac{(1 + \sin \theta)^2}{(1 - \sin \theta)(1 + \sin \theta)}} = \sqrt{\frac{(1 + \sin \theta)^2}{1 - \sin^2 \theta}} \] ### Step 6: Use the identity \( 1 - \sin^2 \theta = \cos^2 \theta \) Now, replace \( 1 - \sin^2 \theta \) with \( \cos^2 \theta \): \[ \sqrt{\frac{(1 + \sin \theta)^2}{\cos^2 \theta}} = \frac{1 + \sin \theta}{\cos \theta} \] ### Step 7: Final expression This can be rewritten as: \[ \sec \theta + \tan \theta \] Thus, the final answer is: \[ \sec \theta + \tan \theta \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sintheta=(3)/(5) , then the value of (tantheta+costheta)/(cottheta+cosectheta) is equal to

The expression of (cottheta+"cosec"theta-1)/(cottheta-"cosec"theta+1) is equal to

(cottheta-cosectheta+1)/(cottheta+cosectheta-1) = ?

If 4cottheta =3 , then, [frac(sintheta -costheta)(sintheta + costheta)] is equal to

(tantheta)/(1-cottheta)+(cottheta)/(1-tantheta) is equal to -

What is ((sintheta+costheta)(tantheta+cottheta))/(sectheta+cosectheta) equal to ?

Prove that sqrt((cosec theta+cottheta)/(cosec theta-cottheta))=(sin theta)/(1-costheta)

If sin theta+costheta=sqrt(2)costheta then what is (costheta-sintheta) equal to ?

If pi le theta le (3pi)/2 , then sqrt((1+cos theta)/(1-costheta))+sqrt((1-costheta)/(1+costheta)) is equal to :