Home
Class 14
MATHS
((1+costheta)^(2)+sin^(2)theta)/((cosec^...

`((1+costheta)^(2)+sin^(2)theta)/((cosec^(2)theta-1)sin^(2)theta)=`

A

`cos theta (1 + sin theta)`

B

`sec theta(1 + sin theta)`

C

`2 cos theta(1 + sec theta)`

D

`2 sec theta (1 + sec theta)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(1 + \cos \theta)^2 + \sin^2 \theta}{(\csc^2 \theta - 1) \sin^2 \theta}\), we will simplify both the numerator and the denominator step by step. ### Step 1: Simplify the Numerator The numerator is \((1 + \cos \theta)^2 + \sin^2 \theta\). 1. Expand \((1 + \cos \theta)^2\): \[ (1 + \cos \theta)^2 = 1 + 2\cos \theta + \cos^2 \theta \] 2. Now, add \(\sin^2 \theta\): \[ 1 + 2\cos \theta + \cos^2 \theta + \sin^2 \theta \] 3. Use the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1\): \[ = 1 + 2\cos \theta + 1 = 2 + 2\cos \theta \] So, the numerator simplifies to: \[ 2(1 + \cos \theta) \] ### Step 2: Simplify the Denominator The denominator is \((\csc^2 \theta - 1) \sin^2 \theta\). 1. Recall that \(\csc^2 \theta = \frac{1}{\sin^2 \theta}\), so: \[ \csc^2 \theta - 1 = \frac{1}{\sin^2 \theta} - 1 = \frac{1 - \sin^2 \theta}{\sin^2 \theta} \] 2. Using the Pythagorean identity again, \(1 - \sin^2 \theta = \cos^2 \theta\): \[ \csc^2 \theta - 1 = \frac{\cos^2 \theta}{\sin^2 \theta} \] 3. Now, multiply by \(\sin^2 \theta\): \[ (\csc^2 \theta - 1) \sin^2 \theta = \frac{\cos^2 \theta}{\sin^2 \theta} \cdot \sin^2 \theta = \cos^2 \theta \] ### Step 3: Combine the Results Now we can substitute the simplified numerator and denominator back into the expression: \[ \frac{2(1 + \cos \theta)}{\cos^2 \theta} \] ### Step 4: Final Simplification This can be further simplified: \[ = \frac{2(1 + \cos \theta)}{\cos^2 \theta} = 2 \cdot \frac{1 + \cos \theta}{\cos^2 \theta} \] ### Final Answer Thus, the final answer is: \[ \frac{2(1 + \cos \theta)}{\cos^2 \theta} \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

((1+cos theta)^2+ sin^2 theta)/ ((cosec^2 theta-1)sin^2 theta) =?

((1+cos theta)^2+ sin^2 theta)/((cosec^2 theta-1) sin^2 theta) =

(tan^(2)theta)/(tan^(2)theta-1)+(cosec^(2)theta)/(sec^(2)theta-cosec^(2)theta)=(1)/(sin^(2)theta-cos^(2)theta)

If 1/(sin^(2)theta)-1/(cos^(2) theta)-1/(tan^(2)theta)-1/(cot^(2)theta)-1/(sec^(2)theta)-1/(cosec^(2)theta)=-3 then find the value of theta .

Prove that : (i) 1+(cos^(2)theta)/(sin^(2)theta)-"cosec"^(2)theta=0 (ii) (1+tan^(2)theta)/("cosec"^(2)theta)=tan^(2)theta

(sec^(2)theta-sin^(2)theta)/(tan^(2)theta)=cosec^(2)theta-cos^(2)theta

If cos theta+cos^(2)theta=1 then sin^(2)theta+2sin^(2)theta+sin^(2)theta=

If 0^(@)lethetale90^(@) , then solve the following equations : (i) (costheta)/(1-sintheta)+(costheta)/(1+sintheta)=4 (ii) (cos^(2)theta-3costheta+2)/(sin^(2)theta)=1 (iii) (costheta)/("cosec"theta+1)+(costheta)/("cosec"theta-1)=2

(1)/(1-cos theta)-(1)/(1+cos theta)=(2cos theta)/(sin^(2)theta)=2cot theta xx csc