Home
Class 14
MATHS
((2sinA)(1+sinA))/(1+sinA+cosA) is equal...

`((2sinA)(1+sinA))/(1+sinA+cosA)` is equal to:

A

1 + sin A cos A

B

1 + sin A - cos A

C

1 - sin A cos A

D

1 + cos A - sin A

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(2\sin A)(1+\sin A)}{1+\sin A+\cos A}\), we will simplify it step by step. ### Step 1: Rewrite the expression We start with the expression: \[ \frac{(2\sin A)(1+\sin A)}{1+\sin A+\cos A} \] ### Step 2: Expand the numerator Next, we expand the numerator: \[ 2\sin A(1+\sin A) = 2\sin A + 2\sin^2 A \] So now our expression looks like: \[ \frac{2\sin A + 2\sin^2 A}{1+\sin A+\cos A} \] ### Step 3: Factor out the numerator We can factor out \(2\) from the numerator: \[ = \frac{2(\sin A + \sin^2 A)}{1+\sin A+\cos A} \] ### Step 4: Simplify the expression Now, we can simplify the expression further. Notice that \(\sin^2 A\) can be rewritten using the Pythagorean identity: \[ \sin^2 A = 1 - \cos^2 A \] However, in this case, we will keep it as is for simplicity. ### Step 5: Analyze the denominator The denominator \(1 + \sin A + \cos A\) does not simplify directly with the numerator, so we will leave it as is. ### Step 6: Final expression Thus, the expression simplifies to: \[ \frac{2(\sin A + \sin^2 A)}{1+\sin A+\cos A} \] ### Conclusion The final simplified form of the expression \(\frac{(2\sin A)(1+\sin A)}{1+\sin A+\cos A}\) is: \[ \frac{2(\sin A + \sin^2 A)}{1+\sin A+\cos A} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

(1-sinA+cosA)^2 is equal to :

(1-sinA+cosA)^(2) is equal to ?

What is (1+sinA)/(1-sinA)-(1-sinA)/(1+sinA) equal to ?

(1+sinA-cosA)/(1+sinA+cosA)=

Prove that : (cosA)/(1+sin A) +(1+sinA)/(cosA)=2 sec A

What is (tan A - sinA)/(sinA^(3)) equal to?