Home
Class 14
MATHS
What is the value of [sin (y – z) + sin ...

What is the value of [sin (y – z) + sin (y + z) + 2 sin y]/[sin (x – z) + sin (x + z) + 2 sin x]?

A

cosx siny

B

(siny) / (sinx)

C

sinz

D

sinx tany

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \frac{\sin(y - z) + \sin(y + z) + 2 \sin y}{\sin(x - z) + \sin(x + z) + 2 \sin x} \] ### Step 1: Simplify the Numerator Using the sine addition formula, we can simplify the numerator: \[ \sin(y - z) + \sin(y + z) = 2 \sin y \cos z \] So, the numerator becomes: \[ 2 \sin y \cos z + 2 \sin y = 2 \sin y (\cos z + 1) \] ### Step 2: Simplify the Denominator Now, we apply the same sine addition formula to the denominator: \[ \sin(x - z) + \sin(x + z) = 2 \sin x \cos z \] Thus, the denominator becomes: \[ 2 \sin x \cos z + 2 \sin x = 2 \sin x (\cos z + 1) \] ### Step 3: Substitute Back into the Expression Now we can substitute the simplified numerator and denominator back into the expression: \[ \frac{2 \sin y (\cos z + 1)}{2 \sin x (\cos z + 1)} \] ### Step 4: Cancel Common Terms We can cancel the common terms \(2\) and \((\cos z + 1)\) from the numerator and denominator (assuming \(\cos z + 1 \neq 0\)): \[ \frac{\sin y}{\sin x} \] ### Final Result Thus, the value of the given expression is: \[ \frac{\sin y}{\sin x} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of (sin (x-y))/(cos x cos y)+(sin (y-z))/(cos y cos z)+(sin (z-x))/(cos z cos x) ?

Prove that, sin x.sin y.sin (xy) + sin y * sin z * sin (yz) + sin z * sin x * sin (zx) + sin (xy) * sin (yz) * sin (zx) = 0

Prove that sin x* sin y*sin(x - y) + sin y *sin z*sin(y- z) + sin z *sin x sin(z - x) + sin(x - y) *sin(y - z)*sin(z -x) = 0 .

sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = (pi) / (2)

Show that sin (x-y) + sin (y-z) + sin (z-x) + 4sin((x-y)/(2)) sin( (y-z)/(2)) sin((z-x)/(2)) =0

If cos x + cos y + cos z = 0 = sin x + sin y + sin then tan (xy) =

If x + y = pi + z, then prove that sin ^ (2) x + sin ^ (2) y-sin ^ (2) z = 2sin x sin y cos z

If sin ^ (- 1) x + sin ^ (- 1) y + sin ^ (- 1) z = pi then x ^ (4) + y ^ (4) + z ^ (4) + 4x ^ (2) y ^ (2) z ^ (2)