Home
Class 14
MATHS
What is the value of [ sin ( 90^(@) - 1...

What is the value of ` [ sin ( 90^(@) - 10 theta) - cos (pi - 6 theta) ] / [ cos ( pi/2 - 10 theta)- sin (pi - 6 theta) ]` ?

A

`tan 2 theta`

B

`cot 2 theta`

C

` cot theta`

D

`cot 3 theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \frac{ \sin(90^\circ - 10\theta) - \cos(\pi - 6\theta) }{ \cos\left(\frac{\pi}{2} - 10\theta\right) - \sin(\pi - 6\theta) } \] we can simplify it step by step. ### Step 1: Simplify the numerator Using the identity \(\sin(90^\circ - x) = \cos(x)\), we have: \[ \sin(90^\circ - 10\theta) = \cos(10\theta) \] Now, for \(\cos(\pi - x) = -\cos(x)\): \[ \cos(\pi - 6\theta) = -\cos(6\theta) \] Thus, the numerator becomes: \[ \cos(10\theta) - (-\cos(6\theta)) = \cos(10\theta) + \cos(6\theta) \] ### Step 2: Simplify the denominator Using the identity \(\cos\left(\frac{\pi}{2} - x\right) = \sin(x)\): \[ \cos\left(\frac{\pi}{2} - 10\theta\right) = \sin(10\theta) \] And again using \(\sin(\pi - x) = \sin(x)\): \[ \sin(\pi - 6\theta) = \sin(6\theta) \] Thus, the denominator becomes: \[ \sin(10\theta) - \sin(6\theta) \] ### Step 3: Rewrite the expression Now we can rewrite the entire expression: \[ \frac{ \cos(10\theta) + \cos(6\theta) }{ \sin(10\theta) - \sin(6\theta) } \] ### Step 4: Use trigonometric identities We can use the sum-to-product identities: 1. For the numerator: \[ \cos(10\theta) + \cos(6\theta) = 2 \cos\left(\frac{10\theta + 6\theta}{2}\right) \cos\left(\frac{10\theta - 6\theta}{2}\right) = 2 \cos(8\theta) \cos(2\theta) \] 2. For the denominator: \[ \sin(10\theta) - \sin(6\theta) = 2 \cos\left(\frac{10\theta + 6\theta}{2}\right) \sin\left(\frac{10\theta - 6\theta}{2}\right) = 2 \cos(8\theta) \sin(2\theta) \] ### Step 5: Substitute back into the expression Now substituting back into the expression gives us: \[ \frac{ 2 \cos(8\theta) \cos(2\theta) }{ 2 \cos(8\theta) \sin(2\theta) } \] ### Step 6: Simplify the expression The \(2 \cos(8\theta)\) cancels out (assuming \(\cos(8\theta) \neq 0\)), leading to: \[ \frac{\cos(2\theta)}{\sin(2\theta)} = \cot(2\theta) \] ### Final Answer Thus, the value of the original expression is: \[ \cot(2\theta) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin (pi cos theta) = cos (pi sin theta). Find sin (2 theta)

What is the value of sin^6 theta + cos^6 theta + 3sin^2 theta cos^2 theta ?

If (3 pi)/(2)