Home
Class 14
MATHS
What is the value of (1)/( sin^(4) (90 -...

What is the value of `(1)/( sin^(4) (90 - theta)) + (1)/([cos ^(2) (90 - theta)] - 1)` ?

A

`tan 2 theta sec 2 theta `

B

`sec 4 theta `

C

`tan 4 theta `

D

`tan ^(2) theta sec ^(2) theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{1}{\sin^4(90^\circ - \theta)} + \frac{1}{\cos^2(90^\circ - \theta) - 1} \), we can simplify it step by step. ### Step 1: Simplify the Trigonometric Functions Using the co-function identities: - \( \sin(90^\circ - \theta) = \cos(\theta) \) - \( \cos(90^\circ - \theta) = \sin(\theta) \) We can rewrite the expression: \[ \frac{1}{\sin^4(90^\circ - \theta)} = \frac{1}{\cos^4(\theta)} \] \[ \cos^2(90^\circ - \theta) - 1 = \sin^2(\theta) - 1 = -\cos^2(\theta) \] ### Step 2: Substitute into the Expression Now substitute these identities into the original expression: \[ \frac{1}{\cos^4(\theta)} + \frac{1}{-\cos^2(\theta)} \] ### Step 3: Combine the Terms The second term can be rewritten as: \[ \frac{1}{-\cos^2(\theta)} = -\frac{1}{\cos^2(\theta)} \] Thus, the expression becomes: \[ \frac{1}{\cos^4(\theta)} - \frac{1}{\cos^2(\theta)} \] ### Step 4: Find a Common Denominator To combine these fractions, we need a common denominator, which is \( \cos^4(\theta) \): \[ \frac{1}{\cos^4(\theta)} - \frac{\cos^2(\theta)}{\cos^4(\theta)} = \frac{1 - \cos^2(\theta)}{\cos^4(\theta)} \] ### Step 5: Simplify the Numerator Using the identity \( 1 - \cos^2(\theta) = \sin^2(\theta) \), we can rewrite the expression: \[ \frac{\sin^2(\theta)}{\cos^4(\theta)} \] ### Final Expression The final simplified expression is: \[ \frac{\sin^2(\theta)}{\cos^4(\theta)} \] ### Conclusion Thus, the value of the original expression is: \[ \frac{\sin^2(\theta)}{\cos^4(\theta)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^(2) (90^(@) - theta) [ 1 + cot ^(2) (90^(@) - theta)] is

What is the value of/का मान क्या है? 1/(sin^4(90- theta))+1/([cos^2(90-theta)]-1) ?

What is the value of [tan^2 (90 - theta) - sin^2 (90 - theta)] cosec^2 (90 - theta) cot^2 (90 - theta) ?

What is the value of [sin (90^@-10 theta) -cos (pi- 6 theta)]//[cos (pi//2 -10 theta) - sin (pi- 6 theta)] ? [sin (90^@-10 theta) -cos (pi- 6 theta)]//[cos (pi//2 -10 theta) - sin (pi- 6 theta)] का मान क्या है?

What is the value of [tan^(2)(90-theta)-sin^(2)(90-theta)]cosec^(2)(90-theta)cot^(2)(90-theta) ?

What is the value of [ sin ( 90^(@) - 10 theta) - cos (pi - 6 theta) ] / [ cos ( pi/2 - 10 theta)- sin (pi - 6 theta) ] ?

What is the value of [1-tan(90^(@)-theta)]^(2)*[cos^(2)(90^(@)-theta) -1] ?

What is the value of sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] ? sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] का मान क्या है?

What is the value of [1 - tan (90-theta) + sec (90 -theta)]//[tan (90 - theta)+ sec (90- theta) + 1] ? [1 - tan (90-theta) + sec (90 -theta)]//[tan (90 - theta)+ sec (90- theta) + 1] का मान क्या है?

What is the simplified value of sin^(2) (90- theta) - [({sin(90-theta) sin theta})/(tan theta)] ?