Home
Class 14
MATHS
What is the value of [ tan (90 - A) + co...

What is the value of `[ tan (90 - A) + cot (90 - A) ] ^(2) // [ 2 sec^(2) (90 - 2A)]` ?

A

0

B

1

C

2

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given expression \(\frac{[ \tan(90^\circ - A) + \cot(90^\circ - A) ]^2}{2 \sec^2(90^\circ - 2A)}\), we will simplify it step by step. ### Step 1: Simplify \(\tan(90^\circ - A)\) and \(\cot(90^\circ - A)\) Using the co-function identities: \[ \tan(90^\circ - A) = \cot(A) \] \[ \cot(90^\circ - A) = \tan(A) \] Thus, we can rewrite the expression: \[ \tan(90^\circ - A) + \cot(90^\circ - A) = \cot(A) + \tan(A) \] ### Step 2: Rewrite the expression Now we can substitute this back into the original expression: \[ \frac{[ \cot(A) + \tan(A) ]^2}{2 \sec^2(90^\circ - 2A)} \] ### Step 3: Simplify \(\sec^2(90^\circ - 2A)\) Using the co-function identity: \[ \sec(90^\circ - x) = \csc(x) \] So, \[ \sec^2(90^\circ - 2A) = \csc^2(2A) \] ### Step 4: Substitute back into the expression Now we can substitute this into our expression: \[ \frac{[ \cot(A) + \tan(A) ]^2}{2 \csc^2(2A)} \] ### Step 5: Simplify \(\cot(A) + \tan(A)\) We know: \[ \cot(A) = \frac{\cos(A)}{\sin(A)} \quad \text{and} \quad \tan(A) = \frac{\sin(A)}{\cos(A)} \] Thus, \[ \cot(A) + \tan(A) = \frac{\cos(A)}{\sin(A)} + \frac{\sin(A)}{\cos(A)} = \frac{\cos^2(A) + \sin^2(A)}{\sin(A) \cos(A)} = \frac{1}{\sin(A) \cos(A)} \] ### Step 6: Substitute back into the expression Now we can substitute this back into our expression: \[ \frac{[ \frac{1}{\sin(A) \cos(A)} ]^2}{2 \csc^2(2A)} \] ### Step 7: Simplify further Calculating the square: \[ \frac{1}{\sin^2(A) \cos^2(A)} \text{ and } \csc^2(2A) = \frac{1}{\sin^2(2A)} \] We know \(\sin(2A) = 2 \sin(A) \cos(A)\), so: \[ \csc^2(2A) = \frac{1}{4 \sin^2(A) \cos^2(A)} \] ### Step 8: Final substitution Now substituting into the expression: \[ \frac{\frac{1}{\sin^2(A) \cos^2(A)}}{2 \cdot \frac{1}{4 \sin^2(A) \cos^2(A)}} = \frac{1}{\sin^2(A) \cos^2(A)} \cdot \frac{4 \sin^2(A) \cos^2(A)}{2} = \frac{4}{2} = 2 \] ### Final Answer Thus, the value of the expression is: \[ \boxed{2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of [sin (90 - A)+ cos (180-2A)]//[cos (90 - 2A) +sin (180 - A)] ? [sin (90 - A)+ cos (180-2A)]//[cos (90 - 2A) +sin (180 - A)] का मान क्या है?

What is the value of [tan^2 (90 - theta) - sin^2 (90 - theta)] cosec^2 (90 - theta) cot^2 (90 - theta) ?

What is the value of [ 1 - sin ( 90 - 2A ) ] // [ 1 + sin ( 90 + 2 A ) ] ?

What is the value of [1 - sin(90 -2A)|//[1 + sin (90 + 2A)] ? [1 - sin(90 -2A)|//[1 + sin (90 + 2A)] का मान क्या है?

What is the value of sec (90^@-A)-cot A cos (90^@-A)tan(90^@-A) ?

What is the value of [tan^2 (90- theta)-sec^2 (90 - theta)] tan^2 (90- theta) cot^2 (90 -theta) ?

What is the value of [1 - tan (90-theta) + sec (90 -theta)]//[tan (90 - theta)+ sec (90- theta) + 1] ? [1 - tan (90-theta) + sec (90 -theta)]//[tan (90 - theta)+ sec (90- theta) + 1] का मान क्या है?

What is the value of sin (90^@ +2A)[4 - cos^2 (90^@- 2A)] ? sin (90^@ +2A)[4 - cos^2 (90^@- 2A)] का मान क्या है?

What is the value of 1+2 cot^2(90-x)-2 cosec (90-x)cot (90-x)]//[cosec (90-x)-cot(90-x)] ? 1+2 cot^2(90-x)-2 cosec (90-x)cot (90-x)]//[cosec (90-x)-cot(90-x)] का मान क्या है?

What is the value of [sin(90-A)+cos(180-2A)]//[cos(90-2A)+sin(180-A)]?