Home
Class 14
MATHS
What is the value of {(sin4x+sin4y)tan(2...

What is the value of `{(sin4x+sin4y)tan(2x-2y)}/(sin4x-sin4y)?`

A

`tan 2 (2x + 2y) `

B

`tan(2)`

C

`cot(x - y)`

D

`tan (2x + 2y)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin 4x + \sin 4y}{\sin 4x - \sin 4y} \tan(2x - 2y)\), we can utilize the sum-to-product identities for sine functions. Here’s a step-by-step breakdown of the solution: ### Step 1: Apply the sum-to-product identities We know the following identities: - \(\sin a + \sin b = 2 \sin\left(\frac{a+b}{2}\right) \cos\left(\frac{a-b}{2}\right)\) - \(\sin a - \sin b = 2 \cos\left(\frac{a+b}{2}\right) \sin\left(\frac{a-b}{2}\right)\) Using these identities, we can rewrite \(\sin 4x + \sin 4y\) and \(\sin 4x - \sin 4y\): \[ \sin 4x + \sin 4y = 2 \sin\left(2x + 2y\right) \cos\left(2x - 2y\right) \] \[ \sin 4x - \sin 4y = 2 \cos\left(2x + 2y\right) \sin\left(2x - 2y\right) \] ### Step 2: Substitute into the expression Now substitute these identities into the original expression: \[ \frac{\sin 4x + \sin 4y}{\sin 4x - \sin 4y} = \frac{2 \sin(2x + 2y) \cos(2x - 2y)}{2 \cos(2x + 2y) \sin(2x - 2y)} \] ### Step 3: Simplify the expression The \(2\) in the numerator and denominator cancels out: \[ = \frac{\sin(2x + 2y) \cos(2x - 2y)}{\cos(2x + 2y) \sin(2x - 2y)} \] ### Step 4: Use the definition of tangent We can express this as: \[ = \tan(2x + 2y) \cdot \frac{\cos(2x - 2y)}{\sin(2x - 2y)} \] The term \(\frac{\cos(2x - 2y)}{\sin(2x - 2y)}\) is equal to \(\cot(2x - 2y)\): \[ = \tan(2x + 2y) \cdot \cot(2x - 2y) \] ### Step 5: Final simplification Since \(\cot(2x - 2y) = \frac{1}{\tan(2x - 2y)}\), we can rewrite it as: \[ = \tan(2x + 2y) \cdot \frac{1}{\tan(2x - 2y)} \cdot \tan(2x - 2y) \] This simplifies to: \[ = \tan(2x + 2y) \] ### Conclusion Thus, the value of the expression \(\frac{\sin 4x + \sin 4y}{\sin 4x - \sin 4y} \tan(2x - 2y)\) is: \[ \boxed{\tan(2x + 2y)} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of {(sin 4x+ sin4y} [(tan 2x- 2y)]}//(sin 4x -sin4y) ? {(sin 4x+ sin4y} [(tan 2x- 2y)]}//(sin 4x -sin4y) का मान क्या है?

The range of y=(sin4x-sin2x)/(sin4x+sin2x) satisfies

What is the value of [sin (y – z) + sin (y + z) + 2 sin y]/[sin (x – z) + sin (x + z) + 2 sin x]?

If sin2x=n sin 2y , then the value of (tan(x+y))/(tan(x-y)) is :

The equation of the common tangent to the curves y^(2)=4x and x^(2)+32y=0 is x+by+c=0 . the value of |sin^(-1)(sin1)+sin^(-1)(sinb)+sin^(-1)(sinc)| is equal to

Find the derivative of y=sin(x^2-4) .

Let N be the number of triplets (x,y,z) where x,y,z in[0,2 pi] satisfying the inequality (4+sin4x)(2+cot^(2)-y)(1+sin^(4)+z)<12sin^(2)-z Find the value of (N)/(2)

(dy)/(dx)=(x^(2)+sin4x)/(y)

Prove that: (sin x+sin y)/(sin x-sin y)=tan((x+y)/(2))*cot((x-y)/(2))