Home
Class 14
MATHS
If tan theta + sec theta = (x - 2)//(x +...

If `tan theta + sec theta = (x - 2)//(x + 2)`, then what is the value of cos `theta` ?

A

`(x^(2)-1)//(x^(2)+1)`

B

`(2x^(2)-4)//(2x^(2)+ 4)`

C

`(x^(2)-4)//(x^(2)+4)`

D

`(x^(2)-2)//(x^(2)+2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \tan \theta + \sec \theta = \frac{x - 2}{x + 2} \) and find the value of \( \cos \theta \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \tan \theta + \sec \theta = \frac{x - 2}{x + 2} \] ### Step 2: Use the Pythagorean identity Recall the Pythagorean identity: \[ \sec^2 \theta - \tan^2 \theta = 1 \] This can be rearranged to: \[ \sec^2 \theta = 1 + \tan^2 \theta \] ### Step 3: Multiply both sides by \( \sec \theta - \tan \theta \) We can multiply both sides of the original equation by \( \sec \theta - \tan \theta \): \[ (\tan \theta + \sec \theta)(\sec \theta - \tan \theta) = \frac{x - 2}{x + 2}(\sec \theta - \tan \theta) \] This simplifies to: \[ \sec^2 \theta - \tan^2 \theta = \frac{x - 2}{x + 2}(\sec \theta - \tan \theta) \] Using the identity we mentioned, we substitute: \[ 1 = \frac{x - 2}{x + 2}(\sec \theta - \tan \theta) \] ### Step 4: Rearrange the equation Rearranging gives us: \[ \sec \theta - \tan \theta = \frac{x + 2}{x - 2} \] ### Step 5: Set up two equations Now we have two equations: 1. \( \tan \theta + \sec \theta = \frac{x - 2}{x + 2} \) 2. \( \sec \theta - \tan \theta = \frac{x + 2}{x - 2} \) ### Step 6: Add the two equations Adding these two equations: \[ (\tan \theta + \sec \theta) + (\sec \theta - \tan \theta) = \frac{x - 2}{x + 2} + \frac{x + 2}{x - 2} \] This simplifies to: \[ 2 \sec \theta = \frac{x - 2}{x + 2} + \frac{x + 2}{x - 2} \] ### Step 7: Simplify the right side To simplify the right side, we need a common denominator: \[ \frac{(x - 2)^2 + (x + 2)^2}{(x + 2)(x - 2)} \] Calculating the numerator: \[ (x - 2)^2 + (x + 2)^2 = x^2 - 4x + 4 + x^2 + 4x + 4 = 2x^2 + 8 \] So we have: \[ 2 \sec \theta = \frac{2x^2 + 8}{x^2 - 4} \] ### Step 8: Solve for \( \sec \theta \) Dividing both sides by 2: \[ \sec \theta = \frac{x^2 + 4}{x^2 - 4} \] ### Step 9: Find \( \cos \theta \) Since \( \sec \theta = \frac{1}{\cos \theta} \), we can find \( \cos \theta \): \[ \cos \theta = \frac{x^2 - 4}{x^2 + 4} \] ### Final Answer Thus, the value of \( \cos \theta \) is: \[ \cos \theta = \frac{x^2 - 4}{x^2 + 4} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If tan ^(2) theta + cot^(2) theta = 2 , then what is the value of 2^(sec theta cosec theta ) ?

If tan theta + sec theta = p, then what is the value of sec theta ?

If "cosec" theta - sin theta =p^3 and sec theta - cos theta = q^3 , then what is the value of tan theta ?

If tan theta+sec theta=(2)/(3), then the value of sec theta is

If cos theta + sec theta = k , what is the value of sin^(2)theta - tan^2 theta ?

If tan theta + sec theta =4 , the value of sin theta cos theta .

If sec ^(2) theta + tan ^(2) theta = 5/3, what is the value of tan 2 theta ?

If sec theta + tan theta =2 , what is the value of sec theta ?