Home
Class 14
MATHS
What is the vlaue of (cos40^(@) - cos140...

What is the vlaue of `(cos40^(@) - cos140^(@))//(sin80^(@)+sin20^(@))`

A

`2sqrt3`

B

`2sqrt3`

C

`1sqrt3`

D

`sqrt3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((\cos 40^\circ - \cos 140^\circ) / (\sin 80^\circ + \sin 20^\circ)\), we can follow these steps: ### Step 1: Use the Cosine Difference Identity We know that: \[ \cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right) \] In our case, let \(A = 40^\circ\) and \(B = 140^\circ\): \[ \cos 40^\circ - \cos 140^\circ = -2 \sin\left(\frac{40^\circ + 140^\circ}{2}\right) \sin\left(\frac{40^\circ - 140^\circ}{2}\right) \] Calculating the averages: \[ \frac{40^\circ + 140^\circ}{2} = \frac{180^\circ}{2} = 90^\circ \] \[ \frac{40^\circ - 140^\circ}{2} = \frac{-100^\circ}{2} = -50^\circ \] Thus, we have: \[ \cos 40^\circ - \cos 140^\circ = -2 \sin(90^\circ) \sin(-50^\circ) \] Since \(\sin(90^\circ) = 1\) and \(\sin(-50^\circ) = -\sin(50^\circ)\): \[ \cos 40^\circ - \cos 140^\circ = -2(1)(-\sin(50^\circ)) = 2\sin(50^\circ) \] ### Step 2: Simplify the Denominator Next, we simplify the denominator \(\sin 80^\circ + \sin 20^\circ\). We can use the sine sum identity: \[ \sin A + \sin B = 2 \sin\left(\frac{A + B}{2}\right) \cos\left(\frac{A - B}{2}\right) \] Let \(A = 80^\circ\) and \(B = 20^\circ\): \[ \sin 80^\circ + \sin 20^\circ = 2 \sin\left(\frac{80^\circ + 20^\circ}{2}\right) \cos\left(\frac{80^\circ - 20^\circ}{2}\right) \] Calculating the averages: \[ \frac{80^\circ + 20^\circ}{2} = \frac{100^\circ}{2} = 50^\circ \] \[ \frac{80^\circ - 20^\circ}{2} = \frac{60^\circ}{2} = 30^\circ \] Thus, we have: \[ \sin 80^\circ + \sin 20^\circ = 2 \sin(50^\circ) \cos(30^\circ) \] Since \(\cos(30^\circ) = \frac{\sqrt{3}}{2}\): \[ \sin 80^\circ + \sin 20^\circ = 2 \sin(50^\circ) \cdot \frac{\sqrt{3}}{2} = \sqrt{3} \sin(50^\circ) \] ### Step 3: Substitute Back into the Original Expression Now substituting back into the original expression: \[ \frac{\cos 40^\circ - \cos 140^\circ}{\sin 80^\circ + \sin 20^\circ} = \frac{2\sin(50^\circ)}{\sqrt{3} \sin(50^\circ)} \] The \(\sin(50^\circ)\) terms cancel out: \[ = \frac{2}{\sqrt{3}} \] ### Final Answer Thus, the value of the expression \((\cos 40^\circ - \cos 140^\circ) / (\sin 80^\circ + \sin 20^\circ)\) is: \[ \frac{2}{\sqrt{3}} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of ((cos40^(@)-cos140^(@)))/((sin80^(@)+sin20^(@))) ?

What is the value of (cos 40^@ -cos 140^@)//(sin 80^@ + sin 20^@) ?

(2cos40^(@)-cos20^(@))/(sin20^(@))=?

(2cos40^(@)-cos20^(@))/(sin20^(@))

(2cos40^(@)-cos20^(@))/(sin20^(@))

What is the value of |(sin 10^(@)-cos 10^(@)),(sin 80^(@),cos 80^(@))| ?

What is the value of ((cos10^(@)+sin20^(@)))/((cos20^(@)-sin10^(@))) ?

(sin70^(@)+cos40^(@))/(cos70^(@)+sin40^(@))=

(sin70^(@)+cos40^(@))/(cos70^(@)+sin40^(@))=