Home
Class 14
MATHS
What is the value of [1-tan(90-theta)+s...

What is the value of `[1-tan(90-theta)+sec(90-theta)]//[tan(90-theta)+sec(90-theta)+1]` ?

A

`cot (theta//2)`

B

`tan(theta//2)`

C

`sin theta`

D

`cos theta`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{1 - \tan(90^\circ - \theta) + \sec(90^\circ - \theta)}{\tan(90^\circ - \theta) + \sec(90^\circ - \theta) + 1}\), we can follow these steps: ### Step 1: Use Trigonometric Identities We know that: - \(\tan(90^\circ - \theta) = \cot(\theta)\) - \(\sec(90^\circ - \theta) = \csc(\theta)\) Thus, we can rewrite the expression as: \[ \frac{1 - \cot(\theta) + \csc(\theta)}{\cot(\theta) + \csc(\theta) + 1} \] ### Step 2: Substitute Values For simplicity, let's assume \(\theta = 30^\circ\). Then: - \(\cot(30^\circ) = \frac{1}{\tan(30^\circ)} = \frac{1}{\frac{1}{\sqrt{3}}} = \sqrt{3}\) - \(\csc(30^\circ) = \frac{1}{\sin(30^\circ)} = \frac{1}{\frac{1}{2}} = 2\) Substituting these values into the expression gives: \[ \frac{1 - \sqrt{3} + 2}{\sqrt{3} + 2 + 1} \] ### Step 3: Simplify the Numerator and Denominator Now, simplifying the numerator: \[ 1 - \sqrt{3} + 2 = 3 - \sqrt{3} \] And the denominator: \[ \sqrt{3} + 2 + 1 = \sqrt{3} + 3 \] So the expression now is: \[ \frac{3 - \sqrt{3}}{\sqrt{3} + 3} \] ### Step 4: Rationalize the Expression To simplify further, we can multiply the numerator and denominator by the conjugate of the denominator: \[ \frac{(3 - \sqrt{3})(\sqrt{3} - 3)}{(\sqrt{3} + 3)(\sqrt{3} - 3)} \] Calculating the denominator: \[ (\sqrt{3})^2 - (3)^2 = 3 - 9 = -6 \] Now for the numerator: \[ (3 - \sqrt{3})(\sqrt{3} - 3) = 3\sqrt{3} - 9 - \sqrt{3}\cdot\sqrt{3} + 3\sqrt{3} = 6\sqrt{3} - 9 - 3 = 6\sqrt{3} - 12 \] So the expression becomes: \[ \frac{6\sqrt{3} - 12}{-6} = -(\sqrt{3} - 2) = 2 - \sqrt{3} \] ### Final Result Thus, the value of the original expression is: \[ 2 - \sqrt{3} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

What is the value of ([tan(90-theta)+sec(90-theta)-1])/([tan(90-theta)-sec(90-theta)+1]) ?

What is the value of [tan^2 (90- theta)-sec^2 (90 - theta)] tan^2 (90- theta) cot^2 (90 -theta) ?

sin(90+theta)+cos(90-theta)+tan(180-theta)+cot(180+theta)

What is the value of (tan (90^@-theta) sec (180^@-theta)sin(-theta))/(sin (180^@+theta) cot (360^@-theta) "cosec"(90^@-theta)) ?

What is the value of [tan^(2)(90-theta)-sin^(2)(90-theta)]cosec^(2)(90-theta)cot^(2)(90-theta) ?

The value of tan(180+theta).tan (90-theta) is :

What is the value of [tan^2 (90 - theta) - sin^2 (90 - theta)] cosec^2 (90 - theta) cot^2 (90 - theta) ?

What is the value of sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] ? sin (180-theta)sin (90- theta)+[cot(90- theta)// 1+tan^2 theta] का मान क्या है?

What is the value of [1-tan(90^(@)-theta)]^(2)*[cos^(2)(90^(@)-theta) -1] ?

What is the value of : (sin(90^(@)-theta)sec(180^(@)-theta)sin(-theta))/(sin(180^(@)+theta)cot(360^(@)-theta)"cosec "(90^(@)+theta)) :