Home
Class 14
MATHS
What is the value of [sin(90-A)+cos(180-...

What is the value of `[sin(90-A)+cos(180-2A)]//[cos(90-2A)+sin(180-A)]?`

A

sin(A/2) cos A

B

cot (A/2)

C

tan (A/2)

D

sin A cos (A/2)

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\sin(90^\circ - A) + \cos(180^\circ - 2A)}{\cos(90^\circ - 2A) + \sin(180^\circ - A)}\), we will simplify each part step by step. ### Step 1: Simplify \(\sin(90^\circ - A)\) Using the co-function identity, we know that: \[ \sin(90^\circ - A) = \cos(A) \] ### Step 2: Simplify \(\cos(180^\circ - 2A)\) Using the identity for cosine, we have: \[ \cos(180^\circ - \theta) = -\cos(\theta) \] Thus, \[ \cos(180^\circ - 2A) = -\cos(2A) \] ### Step 3: Combine the results from Steps 1 and 2 Now substituting back, we have: \[ \sin(90^\circ - A) + \cos(180^\circ - 2A) = \cos(A) - \cos(2A) \] ### Step 4: Simplify \(\cos(90^\circ - 2A)\) Using the co-function identity again: \[ \cos(90^\circ - 2A) = \sin(2A) \] ### Step 5: Simplify \(\sin(180^\circ - A)\) Using the identity for sine: \[ \sin(180^\circ - \theta) = \sin(\theta) \] Thus, \[ \sin(180^\circ - A) = \sin(A) \] ### Step 6: Combine the results from Steps 4 and 5 Now substituting back, we have: \[ \cos(90^\circ - 2A) + \sin(180^\circ - A) = \sin(2A) + \sin(A) \] ### Step 7: Substitute everything back into the original expression Now we can rewrite the original expression: \[ \frac{\cos(A) - \cos(2A)}{\sin(2A) + \sin(A)} \] ### Step 8: Use the sum-to-product identities Using the identities: - \(\cos A - \cos B = -2 \sin\left(\frac{A+B}{2}\right) \sin\left(\frac{A-B}{2}\right)\) - \(\sin A + \sin B = 2 \sin\left(\frac{A+B}{2}\right) \cos\left(\frac{A-B}{2}\right)\) Let \(A = A\) and \(B = 2A\): \[ \cos(A) - \cos(2A) = -2 \sin\left(\frac{A + 2A}{2}\right) \sin\left(\frac{A - 2A}{2}\right) = -2 \sin\left(\frac{3A}{2}\right) \sin\left(-\frac{A}{2}\right) \] And, \[ \sin(2A) + \sin(A) = 2 \sin\left(\frac{2A + A}{2}\right) \cos\left(\frac{2A - A}{2}\right) = 2 \sin\left(\frac{3A}{2}\right) \cos\left(\frac{A}{2}\right) \] ### Step 9: Substitute back into the expression Now substituting these identities back into the expression gives: \[ \frac{-2 \sin\left(\frac{3A}{2}\right) \sin\left(-\frac{A}{2}\right)}{2 \sin\left(\frac{3A}{2}\right) \cos\left(\frac{A}{2}\right)} \] ### Step 10: Simplify the expression The \(2\) cancels out, and \(\sin\left(\frac{3A}{2}\right)\) cancels out as long as \(\sin\left(\frac{3A}{2}\right) \neq 0\): \[ \frac{-\sin\left(-\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)} = \frac{\sin\left(\frac{A}{2}\right)}{\cos\left(\frac{A}{2}\right)} = \tan\left(\frac{A}{2}\right) \] ### Final Result Thus, the value of the expression is: \[ \tan\left(\frac{A}{2}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Write the value of sin A cos(90o-A)+cos A sin(90o-A)

What is the value of, cot(90-x)sin^4 (90-x) + cot(180-x) sin^4 (180-x) ? cot(90-x)sin^4 (90-x) + cot(180-x) sin^4 (180-x) का मान क्या हे?

What is the value of sin (90^@ +2A)[4 - cos^2 (90^@- 2A)] ? sin (90^@ +2A)[4 - cos^2 (90^@- 2A)] का मान क्या है?

If (A+B + C) =90^@ , then what is the value of sin (A/2) sin[(180-B-C)//2] + cos(A/2) sin(B+C) //2 ? यदि (A+B + C) =90^@ है, तो sin (A/2) sin[(180-B-C)//2] + cos(A/2) sin(B+C) //2 का मान क्या है?

What is the value of {sin(90 -x)cos [pi - (x -y)]} + {cos (90- x) sin [pi- (y- x)]} ? {sin(90 -x)cos [pi - (x -y)]} + {cos (90- x) sin [pi- (y- x)]} का मान क्या है?

What is the value of cos[(180-theta)//2] cos[(180-9 theta)//2] + sin[180- 3 theta)//2] sin[180 - 13 theta)//2] ? cos[(180-theta)//2] cos[(180-9 theta)//2] + sin[180- 3 theta)//2] sin[180 - 13 theta)//2] का मान क्या है?

What is the value of [ 1 - sin ( 90 - 2A ) ] // [ 1 + sin ( 90 + 2 A ) ] ?

What is the value of ({[[4cos (90-A)sin^3 (90+A)]-], [[4sin(90+A)cos^3(90-A)]]})/(cos((180+8A)/(2))) ?

What is the value of {(([4 cos (90-A)sin^3(90+A)]-),([4 sin(90+A) cos^3(90-A)]))} /(cos ((180+8A)/2)) ?

What is the value of cos(90 -B)sin (C-A) + sin(90 + A) cos(B+ C)- sin (90 - C) cos (A + B) ? cos(90 -B)sin (C-A) + sin(90 + A) cos(B+ C)- sin (90 - C) cos (A + B) का मान क्या है?