Home
Class 12
MATHS
If [(x,1)][(1,0),(-2,0)] = 0, then x equ...

If `[(x,1)][(1,0),(-2,0)]` = 0, then x equals

A

0

B

`-2`

C

`-1`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation given by the matrix multiplication \(\begin{pmatrix} x & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix}\), we will follow these steps: ### Step 1: Matrix Multiplication We start by multiplying the two matrices. The first matrix is a \(1 \times 2\) matrix and the second matrix is a \(2 \times 2\) matrix. The resulting matrix will also be a \(1 \times 2\) matrix. \[ \begin{pmatrix} x & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 0 \end{pmatrix} = \begin{pmatrix} x \cdot 1 + 1 \cdot (-2) & x \cdot 0 + 1 \cdot 0 \end{pmatrix} \] ### Step 2: Simplifying the Result Now we simplify the multiplication: \[ = \begin{pmatrix} x - 2 & 0 \end{pmatrix} \] ### Step 3: Setting the Result Equal to the Zero Matrix According to the problem, this result must equal the zero matrix: \[ \begin{pmatrix} x - 2 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \end{pmatrix} \] ### Step 4: Solving for x From the equality of the matrices, we can set up the following equation: \[ x - 2 = 0 \] Now, solve for \(x\): \[ x = 2 \] ### Conclusion Thus, the value of \(x\) is \(2\). ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[x,1]][[1,0],[-2,0]] =0 , then x is equals to

If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

If [(1,4),(2,0)] = [(x,y^(2)),(z,0)] y lt 0 then x-y+z is equal to

If [(1,2,1)][(1,2,0),(2,0,1),(1,0,2)] [(0),(2),(x)] = 0 , then the value of x is

If {:A=[(1,2,x),(0,1,0),(0,0,1)]andB=[(1,-2,y),(0,1,0),(0,0,1)]:} and AB=I_3 , then x + y equals

If the trace of the matrix A= [{:( x-1 ,0,2,5),( 3, x^(2) - 2 ,4,1),( -1,-2,x-3,1),(2,0,4,x^(2)-6) :}] is 0 then x is equal to

If [(1,2,-3),(0,4,5),(0,0,1)][(x),(y),(z)]=[(1),(1),(1)] , then (x, y, z) is equal to