Home
Class 12
MATHS
If A = [ (2,-3,4)], B = [(3),(2),(2)], x...

If `A = [ (2,-3,4)], B = [(3),(2),(2)], x = [(1,2,3)] and Y = [(2),(3),(4)]` then AB + XY equals

A

[28]

B

[24]

C

28

D

24

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate \( AB + XY \) step by step. ### Step 1: Calculate \( AB \) Given: - \( A = \begin{pmatrix} 2 & -3 & 4 \end{pmatrix} \) (1 x 3 matrix) - \( B = \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \) (3 x 1 matrix) To multiply \( A \) and \( B \): \[ AB = \begin{pmatrix} 2 & -3 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \\ 2 \end{pmatrix} \] Using the formula for matrix multiplication: \[ AB = (2 \cdot 3) + (-3 \cdot 2) + (4 \cdot 2) \] Calculating each term: \[ = 6 - 6 + 8 = 8 \] ### Step 2: Calculate \( XY \) Given: - \( X = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \) (1 x 3 matrix) - \( Y = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \) (3 x 1 matrix) To multiply \( X \) and \( Y \): \[ XY = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix} \] Using the formula for matrix multiplication: \[ XY = (1 \cdot 2) + (2 \cdot 3) + (3 \cdot 4) \] Calculating each term: \[ = 2 + 6 + 12 = 20 \] ### Step 3: Calculate \( AB + XY \) Now, we add the results from Step 1 and Step 2: \[ AB + XY = 8 + 20 = 28 \] ### Final Answer: \[ AB + XY = 28 \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(2,-3,1),(-2,3,4)] and B=[(2,5),(3,1),(4,2)] , then Find AB

If A =[ 1 2 3 4 ] and B=[[1],[2],[3],[4]] then AB=

If A=[{:(2,3,-1),(1,4,2):}] and B=[{:(2,3),(4,5),(2,1):}] then AB and BA are defined and equal.

If A=[[2,3],[0,1]] and B=[[3,4],[2,1]] ,then (AB)=

If x^(2)+y^(2)=1 and P=(3x-4x^(3))^(2)+(3y-4y^(3))^(2) then P is equal to

[int((3x+2)^(10))/((4x+3)^(12))dx=A((3x+2)/(4x+3))^(B)+C] then "AB" is equal to

A=[{:(x+y, y),(x, x-y):}]_(2) B=[{:(3),(-2):}] and C=[{:(4),(-2):}] , If AB =C. then what is A^(2) equal to ?