Home
Class 12
MATHS
If y=Ae^(5x), then (d^(2)y)/(dx^(2)) is ...

If `y=Ae^(5x)`, then `(d^(2)y)/(dx^(2))` is equal to

A

25 y

B

5 y

C

`-25y`

D

15 y

Text Solution

AI Generated Solution

The correct Answer is:
To find the second derivative of the function \( y = Ae^{5x} \), we will follow these steps: ### Step 1: Find the first derivative \( \frac{dy}{dx} \) Given: \[ y = Ae^{5x} \] To differentiate \( y \) with respect to \( x \), we use the chain rule. The derivative of \( e^{kx} \) is \( ke^{kx} \). Thus, we have: \[ \frac{dy}{dx} = A \cdot \frac{d}{dx}(e^{5x}) = A \cdot 5e^{5x} = 5Ae^{5x} \] ### Step 2: Find the second derivative \( \frac{d^2y}{dx^2} \) Now, we differentiate \( \frac{dy}{dx} \) to find the second derivative: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(5Ae^{5x}) \] Again, applying the chain rule: \[ \frac{d^2y}{dx^2} = 5A \cdot \frac{d}{dx}(e^{5x}) = 5A \cdot 5e^{5x} = 25Ae^{5x} \] ### Step 3: Express \( \frac{d^2y}{dx^2} \) in terms of \( y \) Since \( y = Ae^{5x} \), we can substitute \( y \) into our expression for the second derivative: \[ \frac{d^2y}{dx^2} = 25y \] ### Final Answer Thus, the second derivative \( \frac{d^2y}{dx^2} \) is: \[ \frac{d^2y}{dx^2} = 25y \] ---
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=at^(2),y=2at then (d^(2)y)/(dx^(2)) is equal to

What is (d^(2)y)/(dx^(2)) equal to ?

If x^(2) y^(5) = (x + y)^(7) , " then " (d^(2)y)/(dx^(2)) is equal to

If y = Ae^(5x) + Be^(-5x) , then (d^2y)/(dx^2) is equal to : (a) 25y (b) 5y (c) -25y (d) 15y

If y=ae^(mx)+be^(-mx), then (d^(2y))/(dx^(2))-m^(2)y is equal to m^(2)(ae^(mx)-be^(-mx))1 none of these

If y=ae^(mx)+be^(-mx) then (d^(2)y)/(dx^(2)) is

If y=log(sinx)," then "(d^(2)y)/(dx^(2)) equals