Home
Class 12
MATHS
If y=log(e)((x^(2))/(e^(2))),then (d^(2)...

If `y=log_(e)((x^(2))/(e^(2)))`,then `(d^(2)y)/(dx^(2))` equals

A

`(1)/(x)`

B

`(1)/(x^(2))`

C

`(2)/(x^(2))`

D

`(2)/(x^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function \( y = \log_e\left(\frac{x^2}{e^2}\right) \). ### Step-by-Step Solution: 1. **Rewrite the logarithmic expression:** \[ y = \log_e\left(\frac{x^2}{e^2}\right) = \log_e(x^2) - \log_e(e^2) \] 2. **Apply the logarithmic properties:** \[ y = 2\log_e(x) - 2 \] 3. **Differentiate \( y \) with respect to \( x \) to find the first derivative \( \frac{dy}{dx} \):** \[ \frac{dy}{dx} = 2 \cdot \frac{d}{dx}(\log_e(x)) - 0 = 2 \cdot \frac{1}{x} = \frac{2}{x} \] 4. **Differentiate \( \frac{dy}{dx} \) to find the second derivative \( \frac{d^2y}{dx^2} \):** \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{2}{x}\right) \] Using the power rule: \[ \frac{d^2y}{dx^2} = 2 \cdot \frac{d}{dx}(x^{-1}) = 2 \cdot (-1)x^{-2} = -\frac{2}{x^2} \] ### Final Answer: \[ \frac{d^2y}{dx^2} = -\frac{2}{x^2} \]
Promotional Banner

Similar Questions

Explore conceptually related problems

If y=log ((x^(2))/( e^(x))) ,then (d^(2)y)/(dx^(2)) =

y=x+e^(x), then (d^(2)y)/(dx^(2))=

If y=x^(m)e^(nx) then (d^(2)y)/(dx^(2)) is

If y=tan^(-1)[(log(e//x^(3)))/(log(ex^(3)))]+tan^(-1)[(log(e^(4)x^(3)))/(log(e//x^(12)))]," then "(d^(2)y)/(dx^(2))=

Q.6. If y=log_e(x^2/e^2) , then (d^2y)/dx^2 equals (A) -1/x (B) -1/x^2 (C) 2/x^2 (D) -2/x^2

if x=log_(e)t,t>0 and y+1=t^(2) then (d^(2)y)/(dx^(2))

If x=e^(z) then x^(2)*(d^(2)y)/(dx^(2)) is

If y=e^(x) , then (d^(2)y)/(dx^(2)) = e^(x) .

If y=e^(2x) , then (d^(2)y)/(dx^(2)).(d^(2)x)/(dy^(2)) is equal to