Home
Class 12
MATHS
If x=t^2 and y=t^3 , find (d^2y)/(dx^2) ...

If `x=t^2` and `y=t^3` , find `(d^2y)/(dx^2)` .

A

`(3)/(2)`

B

`(3)/(4t)`

C

`(3)/(2t)`

D

`(3)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If x=t^(2) and y=t^(3), find (d^(2)y)/(dx^(2))

If x=t^(2),quad y=t^(3), then (d^(2)y)/(dx^(2))=3/2(b)3/4t(c)3/2t(d)3t/2

If x=t^(2) and y=t^(3)+1 , then (d^(2)y)/(dx^(2)) is

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = t^(2) and y = t^(3) , then (d^(2)y)/(dx^(2)) is equal to

If x = ct and y=c/t , find (dy)/(dx) at t=2.

If x=t^(2),y=t^(3), then (d^(2)y)/(dx^(2))=(a)(3)/(2)(b)(3)/((4t)) (c) (3)/(2(t)) (d) (3t)/(2)

If x=t^(2),y=t^(3) find (dy)/(dx)

If x=3 cos t and y=4 sin t , then (d^2y)/(dx^2) at the point (x_0,y_0)=(3/2sqrt2,2sqrt2) ,is

If x=f(t) and y=g(t), then (d^(2)y)/(dx^(2)) is equal to