Home
Class 12
MATHS
Let f(x) =sinxandg(x)=x^(3) (d)/(dx)...

Let f(x) `=sinxandg(x)=x^(3)`
`(d)/(dx)f(g(x))` at `x=(pi)/(2)` is ________.

A

0

B

1

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the composition of the functions \( f(x) = \sin x \) and \( g(x) = x^3 \) at \( x = \frac{\pi}{2} \). We will use the chain rule for differentiation. ### Step-by-step Solution: 1. **Identify the Functions**: - Let \( f(x) = \sin x \) - Let \( g(x) = x^3 \) 2. **Apply the Chain Rule**: - According to the chain rule, the derivative of \( f(g(x)) \) is given by: \[ \frac{d}{dx} f(g(x)) = f'(g(x)) \cdot g'(x) \] 3. **Find \( f'(x) \)**: - The derivative of \( f(x) = \sin x \) is: \[ f'(x) = \cos x \] 4. **Find \( g'(x) \)**: - The derivative of \( g(x) = x^3 \) is: \[ g'(x) = 3x^2 \] 5. **Substitute \( g(x) \) into \( f' \)**: - We need to evaluate \( f'(g(x)) \): \[ f'(g(x)) = f'(x^3) = \cos(x^3) \] 6. **Combine the Derivatives**: - Now substitute \( f'(g(x)) \) and \( g'(x) \) into the chain rule formula: \[ \frac{d}{dx} f(g(x)) = \cos(g(x)) \cdot g'(x) = \cos(x^3) \cdot 3x^2 \] 7. **Evaluate at \( x = \frac{\pi}{2} \)**: - Substitute \( x = \frac{\pi}{2} \): \[ g\left(\frac{\pi}{2}\right) = \left(\frac{\pi}{2}\right)^3 = \frac{\pi^3}{8} \] - Therefore: \[ \cos\left(g\left(\frac{\pi}{2}\right)\right) = \cos\left(\frac{\pi^3}{8}\right) \] - Now calculate \( g'(\frac{\pi}{2}) \): \[ g'\left(\frac{\pi}{2}\right) = 3\left(\frac{\pi}{2}\right)^2 = \frac{3\pi^2}{4} \] 8. **Final Calculation**: - Substitute these values back into the derivative: \[ \frac{d}{dx} f(g(x))\bigg|_{x=\frac{\pi}{2}} = \cos\left(\frac{\pi^3}{8}\right) \cdot \frac{3\pi^2}{4} \] ### Final Answer: The value of \( \frac{d}{dx} f(g(x)) \) at \( x = \frac{\pi}{2} \) is: \[ \frac{3\pi^2}{4} \cos\left(\frac{\pi^3}{8}\right) \]
Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) =sinxandg(x)=x^(3) fog(x) ______.

Let f(x) =sinxandg(x)=x^(3) gof(x)= ______.

f(x) = sin^(-1)(sin x) then (d)/(dx)f(x) at x = (7pi)/(2) is

int[(d)/(dx)f(x)]dx=

Let f(x)=x^(5)+2x^(3)+3x+4 then the value of 28(d)/(dx)(f^(-1)) at x=-2 is

f(x)=(2x-pi)^(3)+2x-cos x,Th e n,(d)/(dx)[f^(-1)(x)] at x=pi is equal to :

Let f(x)=(2x-pi)^(3)+2x-cos x .If the value of (d)/(dx)(f^(-1) (x)) at x=pi can be expressed in the form of (p)/(q) ( where p and q are natural numbers in their lowest form), then the value of (p+q) is

Theorem: (d)/(dx)(int f(x)dx=f(x)

If f(x)=(x^(2))/(|x|)backslash write (d)/(dx)((x))