Home
Class 12
MATHS
The area of the quadrilateral ABCD where...

The area of the quadrilateral ABCD where A(0,4,1), B(2,3,-1), C(4,5,0) and D(2,6,2), is equal to

A

9 sq.units

B

18 sq. units

C

27 sq. units

D

81 sq.units

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of the quadrilateral ABCD with vertices A(0,4,1), B(2,3,-1), C(4,5,0), and D(2,6,2), we can use the formula for the area of a quadrilateral formed by two triangles. We will divide the quadrilateral into two triangles, ABC and ACD, and then calculate the area of each triangle using the cross product of vectors. ### Step-by-Step Solution: 1. **Find the vectors AB and AC**: - The vector AB is calculated as: \[ \text{AB} = B - A = (2, 3, -1) - (0, 4, 1) = (2 - 0, 3 - 4, -1 - 1) = (2, -1, -2) \] - The vector AC is calculated as: \[ \text{AC} = C - A = (4, 5, 0) - (0, 4, 1) = (4 - 0, 5 - 4, 0 - 1) = (4, 1, -1) \] 2. **Calculate the cross product AB × AC**: - Using the determinant method for the cross product: \[ \text{AB} \times \text{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -1 & -2 \\ 4 & 1 & -1 \end{vmatrix} \] - Expanding the determinant: \[ = \mathbf{i} \left((-1)(-1) - (-2)(1)\right) - \mathbf{j} \left(2(-1) - (-2)(4)\right) + \mathbf{k} \left(2(1) - (-1)(4)\right) \] \[ = \mathbf{i} (1 + 2) - \mathbf{j} (-2 + 8) + \mathbf{k} (2 + 4) \] \[ = 3\mathbf{i} - 6\mathbf{j} + 6\mathbf{k} \] 3. **Magnitude of the cross product**: - The magnitude of the vector \( \mathbf{v} = (3, -6, 6) \) is calculated as: \[ |\mathbf{v}| = \sqrt{3^2 + (-6)^2 + 6^2} = \sqrt{9 + 36 + 36} = \sqrt{81} = 9 \] 4. **Area of triangle ABC**: - The area of triangle ABC is given by: \[ \text{Area}_{ABC} = \frac{1}{2} |\mathbf{AB} \times \mathbf{AC}| = \frac{1}{2} \times 9 = 4.5 \] 5. **Find the vectors AD and AC**: - The vector AD is calculated as: \[ \text{AD} = D - A = (2, 6, 2) - (0, 4, 1) = (2, 2, 1) \] 6. **Calculate the cross product AD × AC**: - Using the determinant method for the cross product: \[ \text{AD} \times \text{AC} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 1 \\ 4 & 1 & -1 \end{vmatrix} \] - Expanding the determinant: \[ = \mathbf{i} \left(2(-1) - 1(1)\right) - \mathbf{j} \left(2(-1) - 1(4)\right) + \mathbf{k} \left(2(1) - 2(4)\right) \] \[ = \mathbf{i} (-2 - 1) - \mathbf{j} (-2 - 4) + \mathbf{k} (2 - 8) \] \[ = -3\mathbf{i} + 6\mathbf{j} - 6\mathbf{k} \] 7. **Magnitude of the cross product**: - The magnitude of the vector \( \mathbf{w} = (-3, 6, -6) \) is calculated as: \[ |\mathbf{w}| = \sqrt{(-3)^2 + 6^2 + (-6)^2} = \sqrt{9 + 36 + 36} = \sqrt{81} = 9 \] 8. **Area of triangle ACD**: - The area of triangle ACD is given by: \[ \text{Area}_{ACD} = \frac{1}{2} |\mathbf{AD} \times \mathbf{AC}| = \frac{1}{2} \times 9 = 4.5 \] 9. **Total Area of Quadrilateral ABCD**: - The total area of quadrilateral ABCD is: \[ \text{Area}_{ABCD} = \text{Area}_{ABC} + \text{Area}_{ACD} = 4.5 + 4.5 = 9 \] ### Final Answer: The area of the quadrilateral ABCD is \( 9 \) square units.
Promotional Banner

Similar Questions

Explore conceptually related problems

The area of the quadrilateral ABCD where A (0,4,1) , B(2,3,-1), c (4,5,0)and D(2,6,2) is to :

find the area of the quadrilateral ABCD with vertices A(-2,0),B(0,4),C(4,-2),D(2,2)

Find the area of the quadrilateral ABCD whose vertices are A(1,0),B(5,3),C(2,7) and D(-2,4)

Find the area of a quadrilateral ABCD whose vertices are A(-4, 8), B(-3, -4), C(0, -5) and D(5, 6).

Find the area of the quadrilateral whose vertices are A(1,1),B(3,4),C(5,-2) and D(4,-7)

Find the area of quadrilateral ABCD, whose vertices are A(-4,8),B(-3,-4),C(0,-5)and D(5,6).

Area of the quadrilateral having vertices (0,4,1),(2,3,-1)(4,5,0),(2,6,2) is (A) 27 sq. units (B) 9 sq. units (C) 81 sq. units (D) none of these

Find the area of a quadrilateral ABCD having vertices at A(l, 2), B(1, 0), C(4,0) and D(4,4).

Find the area of quadrilateral ABCD whose vertices are A(-3, -1), B(-2, -4), C(4, -1) and D(3, 4).