Home
Class 12
MATHS
minimize z=20x1+20x2 , subject to x1>=0...

minimize ` z=20x_1+20x_2` , subject to `x_1>=0,x_2>=0,x_1+2x_2>=8,3x_1+2x_2>=15,5x_1+2x_2>=20.`

A

Both A and R are true and R is the correct explanation of A.

B

Both A and R are true and R is NOT the correct explanation of A.

C

A is true but R is false

D

A is false and R is true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Consider the following linear programming Problem : Maximize Z=50x_(1)+30x_(2) Subject to 2x_(1)+x_(2)<14,5x_(1)+5x_(2)<=40x_(1)+3x_(2)<=18,x_(1),x_(2)<=0

The objective function z=x_(1)+x_(2), subject to x_(1)+x_(2)<=10,-2x_(1)+3x_(2)<=15,x_(1)<=6,x_(1),x_(2)<=0 has maximum value of the feasible region.

Max Z=3000x_(1)+2000x_(2) Subjected to x_(1)+2x_(2) =0

The minimum vlaue Z = 2x_1 +3x_2 subject to the conditions 2x_1+7x_2ge22, x_1+x_2ge 6, 5x_1 +x_2 ge 10 and x_1, x_2 ge 0 is

Maximize z = 3 x _ 1 - x _ 2 , subject to 2x _ 1 + x _ 2 ge 2, x _ 1 + 3 x _ 2 le 2, x _ 2 le 2, x _ 1 ge 0 , x _ 2 ge 0

Minimize z = -x_(1) + 2x_(2) Subject to -x_(1) + 3x_(2) le 10 x_(1) + x_(2) le 6 x_(1) - x_(2) le 2 and x_(1), x_(2) ge 0

Maximize z = -x_(1) + 2x_(2) Subject to -x_(1) + x_(2) le 1 -x_(1) + 2x_(2) le 4 x_(1), x_(2) le 0

For L.P.P. maximize z = 4x_(1) + 2X_(2) subject to 3x_(1) + 2x_(2) ge 9, x_(1) - x_(2) le 3,x_(1) ge 0, x_(2) ge 0 has ……

Maximize z = 5x_(1) + 3x_(2) Subject to 3x_(1) + 5x_(2) le 15 5x_(1) + 2x_(2) le 10 x_(1), x_(2) ge 0

Maximize z = x_(1) + 3x_(2) Subject to 3x_(1) + 6x_(2) le 8 5x_(1) + 2x_(2) le 10 and x_(1), x_(2) ge 0