Home
Class 12
MATHS
For L.P.P. maximize z = 4x(1) + 2X(2) ...

For L.P.P. maximize `z = 4x_(1) + 2X_(2)` subject to `3x_(1) + 2x_(2) ge 9, x_(1) - x_(2) le 3,x_(1) ge 0, x_(2) ge 0` has ……

A

Both A and R are true and R is the correct explanation of A.

B

Both A and R are true and R is NOT the correct explanation of A.

C

A is true but R is false

D

A is false and R is true

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Maximize z = x_(1) + 3x_(2) Subject to 3x_(1) + 6x_(2) le 8 5x_(1) + 2x_(2) le 10 and x_(1), x_(2) ge 0

Maximize z = -x_(1) + 2x_(2) Subject to -x_(1) + x_(2) le 1 -x_(1) + 2x_(2) le 4 x_(1), x_(2) le 0

Maximize z = 5x_(1) + 3x_(2) Subject to 3x_(1) + 5x_(2) le 15 5x_(1) + 2x_(2) le 10 x_(1), x_(2) ge 0

Minimize z = -x_(1) + 2x_(2) Subject to -x_(1) + 3x_(2) le 10 x_(1) + x_(2) le 6 x_(1) - x_(2) le 2 and x_(1), x_(2) ge 0

By graphical method, the solutions of linear programming problem maximise Z=3x_(1)+5x_(2) subject to constraints 3x_(1)+2x_(2) le 18, x_(1) le 4, x_(2) le 6 x_(1) ge0,x_(2) ge 0 are

Maximize z = 3 x _ 1 - x _ 2 , subject to 2x _ 1 + x _ 2 ge 2, x _ 1 + 3 x _ 2 le 2, x _ 2 le 2, x _ 1 ge 0 , x _ 2 ge 0

Maximize z = 7x_(1) + 3x_(2) by graphical method Subjecto to x_(1) + 2x_(2) ge 3 x_(1) + x_(2) le 4 0 le x_(1) le (5)/(2) and 0 le x_(2) le (3)/(2)

The linear programming problem : Maximize z=z=x_(1)+x_(2) subject to constraints x_(1)+2x_(2)le2000,x_(1)+x_(2)le1500,x_(2)le600,x_(1)ge0 has

The objective function Z=x_(1)+x_(2), subject to x_(1) +x_(2) le 10 , - 2x _(1) +3x_(2)le 15, x x_(1) le 6,x_(1),x_(2) ge 0 has maximum value ________ of the feasible region .